#include // bool #include // fprintf() #include // EXIT_{FAILURE,SUCCESS} #include // exit() #include // memset() #include // fabsf() #define STB_IMAGE_WRITE_IMPLEMENTATION #define STB_ONLY_PNG #include "stb_image_write.h" #include "util.h" #include "km.h" #define MAX_CLUSTERS 10 #define NUM_TESTS 100 #define MAX_BEST 10 #define IM_WIDTH 128 #define IM_HEIGHT 128 #define IM_STRIDE (3 * IM_WIDTH) typedef struct { float score; km_set_t set; } best_item_t; typedef struct { // cluster initialization method km_init_type_t init_type; // random number source km_rand_t rs; struct { float distance, variance, cluster_size; size_t num_empty_clusters; } rows[MAX_CLUSTERS - 2]; // best clusters best_item_t best[MAX_BEST]; size_t num_best; } ctx_t; static int best_score_cmp( const void * const ap, const void * const bp ) { const best_item_t * const a = ap; const best_item_t * const b = bp; return (a->score > b->score) ? 1 : -1; } static void ctx_best_sort( ctx_t * const ctx ) { // sort best sets by ascending score (worst to best) qsort( ctx->best, (ctx->num_best % MAX_BEST), sizeof(best_item_t), best_score_cmp ); } static void ctx_best_each( const ctx_t * const ctx, void (*on_best)(const km_set_t * const, const size_t, const float, void *), void * const cb_data ) { if (on_best) { // walk best sets and emit each one for (size_t i = 0; i < MIN(ctx->num_best, MAX_BEST); i++) { on_best(&(ctx->best[i].set), i, ctx->best[i].score, cb_data); } } } static bool load_on_shape( const km_shape_t * const shape, void * const cb_data ) { km_set_t * const set = cb_data; // D("shape: %zu floats, %zu ints", shape->num_floats, shape->num_ints); // init set if (!km_set_init(set, shape, 100)) { die("km_set_init() failed"); } // return success return true; } static bool load_on_row( const float * const floats, const int * const ints, void * const cb_data ) { km_set_t * const set = cb_data; // push row if (!km_set_push(set, 1, floats, ints)) { die("km_set_push_rows() failed"); } // return success return true; } static void load_on_error( const char * const err, void * const cb_data ) { UNUSED(cb_data); die("load failed: %s", err); } static const km_load_cbs_t LOAD_CBS = { .on_shape = load_on_shape, .on_row = load_on_row, .on_error = load_on_error, }; static bool find_on_init( km_set_t * const cs, const size_t num_clusters, const km_set_t * const set, void *cb_data ) { ctx_t * const ctx = cb_data; return km_init(cs, ctx->init_type, num_clusters, set, &(ctx->rs)); } static bool find_on_fini( km_set_t * const cs, void *cb_data ) { UNUSED(cb_data); km_set_fini(cs); return true; } static void find_on_data( const km_find_data_t * const data, void *cb_data ) { ctx_t * const ctx = cb_data; const size_t ofs = data->num_clusters - 2; ctx->rows[ofs].distance += data->mean_distance; ctx->rows[ofs].variance += data->mean_variance; ctx->rows[ofs].cluster_size += data->mean_cluster_size; ctx->rows[ofs].num_empty_clusters += data->num_empty_clusters; } static bool find_on_best( const float score, const km_set_t * const cs, void *cb_data ) { ctx_t * const ctx = cb_data; D("best score = %0.3f, num_clusters = %zu", score, cs->num_rows); // get pointer to destination set // (note: data->best is a ring buffer) km_set_t * const dst = &(ctx->best[ctx->num_best % MAX_BEST].set); if (ctx->num_best >= MAX_BEST) { // finalize old best data set // D("finalizing old best %zu", ctx->num_best); km_set_fini(dst); } // copy data set to best ring buffer if (!km_set_copy(dst, cs)) { die("km_set_copy()"); } // increment best count ctx->num_best++; // return success return true; } // init find config static const km_find_cbs_t FIND_CBS = { .max_clusters = MAX_CLUSTERS, .num_tests = NUM_TESTS, .on_init = find_on_init, .on_fini = find_on_fini, .on_data = find_on_data, .on_best = find_on_best, }; static void ctx_csv_print_row( const ctx_t * const ctx, FILE * const fh, const size_t i ) { const size_t num_clusters = i + 2; const float mean_distance = ctx->rows[i].distance / NUM_TESTS, mean_variance = ctx->rows[i].variance / NUM_TESTS, mean_cluster_size = ctx->rows[i].cluster_size / NUM_TESTS, mean_empty = 1.0 * ctx->rows[i].num_empty_clusters / NUM_TESTS, score = km_score(mean_distance, mean_empty); // print result fprintf(fh, "%zu,%0.3f,%0.3f,%0.3f,%0.3f,%0.3f\n", num_clusters, score, mean_distance, mean_variance, mean_cluster_size, mean_empty ); } static void ctx_csv_print( const ctx_t * const ctx, FILE * const fh ) { // print headers fprintf(fh, "#,score,distance,variance,cluster_size,empty_clusters\n"); // print rows for (size_t i = 0; i < MAX_CLUSTERS - 2; i++) { ctx_csv_print_row(ctx, fh, i); } } // static image data buffer static uint8_t im_data[3 * IM_WIDTH * IM_HEIGHT]; static void save_on_best( const km_set_t * const set, const size_t rank, const float score, void * const cb_data ) { UNUSED(score); UNUSED(cb_data); // convert rank to channel brightness const uint8_t ch = 0x33 + (0xff - 0x33) * (1.0 * rank + 1) / (MAX_BEST); const uint32_t color = (ch & 0xff) << 16; // const uint32_t color = 0xff0000; // D("rank = %zu, score = %0.3f, size = %zu, color = %06x", rank, score, set->num_rows, color); // draw clusters km_set_draw(set, im_data, IM_WIDTH, IM_HEIGHT, 3, color); } static void ctx_save_png( const ctx_t * const ctx, const char * const png_path, const km_set_t * const set ) { // clear image data to white memset(im_data, 0xff, sizeof(im_data)); // draw data points km_set_draw(set, im_data, IM_WIDTH, IM_HEIGHT, 1, 0x000000); if (!stbi_write_png(png_path, IM_WIDTH, IM_HEIGHT, 3, im_data, IM_STRIDE)) { die("stbi_write_png(\"%s\")", png_path); } // draw best cluster points ctx_best_each(ctx, save_on_best, NULL); // save png if (!stbi_write_png(png_path, IM_WIDTH, IM_HEIGHT, 3, im_data, IM_STRIDE)) { die("stbi_write_png(\"%s\")", png_path); } } static const char USAGE_FORMAT[] = "Usage: %s [init] [data_path] \n" "\n" "Arguments:\n" "* init: Cluster init method (one of \"rand\" or \"set\").\n" "* data_path: Path to input data file.\n" "* png_path: Path to output file (optional).\n" ""; int main(int argc, char *argv[]) { // check command-line arguments if (argc < 3) { fprintf(stderr, USAGE_FORMAT, argv[0]); return EXIT_FAILURE; } // get command-line arguments const char * const init_type_name = argv[1]; const char * const data_path = argv[2]; const char * const png_path = (argc > 3) ? argv[3] : NULL; // init random seed srand(getpid()); // init context ctx_t ctx; memset(&ctx, 0, sizeof(ctx_t)); ctx.init_type = km_init_get_type(init_type_name); // init ctx rng km_rand_init_erand48(&(ctx.rs), rand()); // init data set km_set_t set; if (!km_load_path(data_path, &LOAD_CBS, &set)) { die("km_load_path(\"%s\") failed", data_path); } // normalize data set if (!km_set_normalize(&set)) { die("km_set_normalize() failed"); } // find best solutions if (!km_find(&set, &FIND_CBS, &ctx)) { die("km_find()"); } // print csv ctx_csv_print(&ctx, stdout); // sort best results from lowest to highest ctx_best_sort(&ctx); if (png_path) { // save png of normalized data set and best clusters ctx_save_png(&ctx, png_path, &set); } // finalize data set km_set_fini(&set); // return success return 0; }