#include // bool #include // fprintf() #include // EXIT_{FAILURE,SUCCESS} #include // exit() #include // memset() #include // fabsf() #define STB_IMAGE_WRITE_IMPLEMENTATION #define STB_ONLY_PNG #include "stb_image_write.h" #include "util.h" #include "km.h" #define MAX_CLUSTERS 10 #define NUM_TESTS 100 typedef struct { km_rand_t rs; struct { float distance, variance, cluster_size; size_t num_empty_clusters; } rows[MAX_CLUSTERS - 2]; } find_t; static bool load_on_shape( const km_shape_t * const shape, void * const cb_data ) { km_set_t * const set = cb_data; fprintf(stderr, "DEBUG: shape = { %zu, %zu }\n", shape->num_floats, shape->num_ints); // init set if (!km_set_init(set, shape, 100)) { die("km_set_init() failed"); } // return success return true; } static bool load_on_row( const float * const floats, const int * const ints, void * const cb_data ) { km_set_t * const set = cb_data; // push row if (!km_set_push(set, 1, floats, ints)) { die("km_set_push_rows() failed"); } // return success return true; } static void load_on_error( const char * const err, void * const cb_data ) { UNUSED(cb_data); die(err); } static const km_load_cbs_t LOAD_CBS = { .on_shape = load_on_shape, .on_row = load_on_row, .on_error = load_on_error, }; static bool find_on_init( km_set_t * const cs, const size_t num_floats, const size_t num_clusters, void *cb_data ) { find_t *data = cb_data; return km_set_init_rand_clusters(cs, num_floats, num_clusters, &(data->rs)); } static bool find_on_fini( km_set_t * const cs, void *cb_data ) { UNUSED(cb_data); km_set_fini(cs); return true; } static void find_on_data( const km_find_data_t * const data, void *cb_data ) { find_t * const find_data = cb_data; const size_t ofs = data->num_clusters - 2; find_data->rows[ofs].distance += data->mean_distance; find_data->rows[ofs].variance += data->mean_variance; find_data->rows[ofs].cluster_size += data->mean_cluster_size; find_data->rows[ofs].num_empty_clusters += data->num_empty_clusters; } // init find config static const km_find_cbs_t FIND_CBS = { .max_clusters = MAX_CLUSTERS, .num_tests = NUM_TESTS, .on_init = find_on_init, .on_fini = find_on_fini, .on_data = find_on_data, }; static float get_score( const size_t ofs, const find_t * const find_data ) { if (!ofs || ofs == MAX_CLUSTERS - 3) { return 0; } // const size_t num_clusters = ofs + 2; const float mean_empty_clusters = 1.0 * find_data->rows[ofs].num_empty_clusters / NUM_TESTS; const float ds[3] = { find_data->rows[ofs - 1].distance / NUM_TESTS, find_data->rows[ofs + 0].distance / NUM_TESTS, find_data->rows[ofs + 1].distance / NUM_TESTS, }; return ( (fabsf(ds[0] - ds[1]) / fabsf(ds[1] - ds[2])) + -2.0 * mean_empty_clusters ); } static void print_csv_row( const size_t i, const find_t * const find_data ) { const size_t num_clusters = i + 2; const float mean_distance = find_data->rows[i].distance / NUM_TESTS, mean_variance = find_data->rows[i].variance / NUM_TESTS, mean_cluster_size = find_data->rows[i].cluster_size / NUM_TESTS, mean_empty_clusters = 1.0 * find_data->rows[i].num_empty_clusters / NUM_TESTS; // print result printf("%zu,%0.3f,%0.3f,%0.3f,%0.3f,%0.3f\n", num_clusters, get_score(i, find_data), mean_distance, mean_variance, mean_cluster_size, mean_empty_clusters ); } static void print_csv( const find_t * const find_data ) { // print headers printf( "#," "score," "distance," "variance," "cluster_size," "empty_clusters\n" ); for (size_t i = 0; i < MAX_CLUSTERS - 2; i++) { print_csv_row(i, find_data); } } #define IM_WIDTH 128 #define IM_HEIGHT 128 #define IM_STRIDE (3 * IM_WIDTH) static uint8_t im_data[3 * IM_WIDTH * IM_HEIGHT]; static void save_png( const char * const png_path, const km_set_t * const set ) { // clear image data to white memset(im_data, 0xff, sizeof(im_data)); // draw red points km_set_draw(set, im_data, IM_WIDTH, IM_HEIGHT, 0xff0000); if (!stbi_write_png(png_path, IM_WIDTH, IM_HEIGHT, 3, im_data, IM_STRIDE)) { die("stbi_write_png(\"%s\")", png_path); } } int main(int argc, char *argv[]) { // check command-line if (argc < 2) { fprintf(stderr, "Usage: %s \n", argv[0]); return EXIT_FAILURE; } // init random seed srand(getpid()); // init find data find_t find_data; memset(find_data.rows, 0, sizeof(find_data.rows)); km_rand_init_system(&(find_data.rs)); // init data set km_set_t set; if (!km_load_path(argv[1], &LOAD_CBS, &set)) { die("km_load_path() failed"); } if (!km_set_normalize(&set)) { die("km_set_normalize() failed"); } // find best solution if (!km_find(&set, &FIND_CBS, &find_data)) { die("km_find()"); } // print csv print_csv(&find_data); // save png of data set save_png("data.png", &set); // finalize data set km_set_fini(&set); // return success return 0; }