#include "sha2.h" #include // memcpy // extract bytes from uint32_t // (used in sha256_fini() and sha224_fini()) #define WB(ctx, i) \ ((ctx)->h[i] >> 24) & 0xff, \ ((ctx)->h[i] >> 16) & 0xff, \ ((ctx)->h[i] >> 8) & 0xff, \ ((ctx)->h[i]) & 0xff // sha256 initial hash values // (first 32 bits of the fractional parts of the square roots of the // first 8 primes 2..19): static const uint32_t SHA256_INIT[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, }; // round constants // (first 32 bits of the fractional parts of the cube roots of the first // 64 primes 2..311): static const uint32_t K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; // rotate right // (src: https://blog.regehr.org/archives/1063) static inline uint32_t rr(const uint32_t v, const size_t n) { return (v << (32 - n)) | (v >> n); } void sha256_init(sha256_t * const ctx) { ctx->buf_len = 0; ctx->num_bytes = 0; memcpy(ctx->h, SHA256_INIT, sizeof(SHA256_INIT)); } // WI: decode buffer data as 32-bit words (used for the first 16 words) #define WI(i) ( \ (((uint32_t) ctx->buf[4 * (i) + 0]) << 24) | \ (((uint32_t) ctx->buf[4 * (i) + 1]) << 16) | \ (((uint32_t) ctx->buf[4 * (i) + 2]) << 8) | \ ((uint32_t) ctx->buf[4 * (i) + 3]) \ ) // WE: expand first 16 buffer words into remaining 48 words #define WE(i) do { \ const uint32_t w2 = w[(i) - 2], \ w7 = w[(i) - 7], \ w15 = w[(i) - 15], \ w16 = w[(i) - 16], \ s0 = rr(w15, 7) ^ rr(w15, 18) ^ (w15 >> 3), \ s1 = rr(w2, 17) ^ rr(w2, 19) ^ (w2 >> 10); \ w[i] = w16 + s0 + w7 + s1; \ } while (0) // WC: compress word #define WC(i) do { \ const uint32_t s1 = rr(hs[4], 6) ^ rr(hs[4], 11) ^ rr(hs[4], 25), \ ch = (hs[4] & hs[5]) ^ ((~(hs[4])) & hs[6]), \ t0 = hs[7] + s1 + ch + K[i] + w[i], \ s0 = rr(hs[0], 2) ^ rr(hs[0], 13) ^ rr(hs[0], 22), \ mj = (hs[0] & hs[1]) ^ (hs[0] & hs[2]) ^ (hs[1] & hs[2]), \ t1 = s0 + mj; \ \ hs[7] = hs[6]; \ hs[6] = hs[5]; \ hs[5] = hs[4]; \ hs[4] = hs[3] + t0; \ hs[3] = hs[2]; \ hs[2] = hs[1]; \ hs[1] = hs[0]; \ hs[0] = t0 + t1; \ } while (0) static void sha256_block(sha256_t * const ctx) { // init first 16 words from buffer uint32_t w[64] = { WI(0), WI(1), WI(2), WI(3), WI(4), WI(5), WI(6), WI(7), WI(8), WI(9), WI(10), WI(11), WI(12), WI(13), WI(14), WI(15), 0, }; // Extend the first 16 words into the remaining 48 words w[16..63] of // the message schedule array // // for i from 16 to 63 // s0 := (w[i-15] rr 7) xor (w[i-15] rr 18) xor (w[i-15] rs 3) // s1 := (w[i- 2] rr 17) xor (w[i- 2] rr 19) xor (w[i- 2] rs 10) // w[i] := w[i-16] + s0 + w[i-7] + s1 // // for (size_t i = 16; i < 64; i++) { // const uint32_t w2 = w[i - 2], // w7 = w[i - 7], // w15 = w[i - 15], // w16 = w[i - 16], // s0 = rr(w15, 7) ^ rr(w15, 18) ^ (w15 >> 3), // s1 = rr(w2, 17) ^ rr(w2, 19) ^ (w2 >> 10); // w[i] = w16 + s0 + w7 + s1; // } // // // fully unrolled version: // WE(24); WE(25); WE(26); WE(27); WE(28); WE(29); WE(30); WE(31); // WE(32); WE(33); WE(34); WE(35); WE(36); WE(37); WE(38); WE(39); // WE(40); WE(41); WE(42); WE(43); WE(44); WE(45); WE(46); WE(47); // WE(48); WE(49); WE(50); WE(51); WE(52); WE(53); WE(54); WE(55); // WE(56); WE(57); WE(58); WE(59); WE(60); WE(61); WE(62); WE(63); // // partially unrolled: // for (size_t we_i = 16; we_i < 64; we_i += 16) { // WE(we_i + 0); WE(we_i + 1); WE(we_i + 2); WE(we_i + 3); // WE(we_i + 4); WE(we_i + 5); WE(we_i + 6); WE(we_i + 7); // WE(we_i + 8); WE(we_i + 9); WE(we_i + 10); WE(we_i + 11); // WE(we_i + 12); WE(we_i + 13); WE(we_i + 14); WE(we_i + 15); // } for (size_t i = 16; i < 64; i++) { WE(i); } // Initialize working variables to current hash value uint32_t hs[8] = { ctx->h[0], ctx->h[1], ctx->h[2], ctx->h[3], ctx->h[4], ctx->h[5], ctx->h[6], ctx->h[7], }; // Compression function main loop // // for i from 0 to 63 // S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25) // ch := (e and f) xor ((not e) and g) // temp1 := h + S1 + ch + k[i] + w[i] // S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22) // maj := (a and b) xor (a and c) xor (b and c) // temp2 := S0 + maj // // h := g // g := f // f := e // e := d + temp1 // d := c // c := b // b := a // a := temp1 + temp2 // // for (size_t i = 0; i < 64; i++) { // const uint32_t s1 = rr(hs[4], 6) ^ rr(hs[4], 11) ^ rr(hs[4], 25), // ch = (hs[4] & hs[5]) ^ ((~(hs[4])) & hs[6]), // t0 = hs[7] + s1 + ch + K[i] + w[i], // s0 = rr(hs[0], 2) ^ rr(hs[0], 13) ^ rr(hs[0], 22), // mj = (hs[0] & hs[1]) ^ (hs[0] & hs[2]) ^ (hs[1] & hs[2]), // t1 = s0 + mj; // hs[7] = hs[6]; // hs[6] = hs[5]; // hs[5] = hs[4]; // hs[4] = hs[3] + t0; // hs[3] = hs[2]; // hs[2] = hs[1]; // hs[1] = hs[0]; // hs[0] = t0 + t1; // } // // // fully unrolled version: // WC(0); WC(1); WC(2); WC(3); WC(4); WC(5); WC(6); WC(7); // WC(8); WC(9); WC(10); WC(11); WC(12); WC(13); WC(14); WC(15); // WC(16); WC(17); WC(18); WC(19); WC(20); WC(21); WC(22); WC(23); // WC(24); WC(25); WC(26); WC(27); WC(28); WC(29); WC(30); WC(31); // WC(32); WC(33); WC(34); WC(35); WC(36); WC(37); WC(38); WC(39); // WC(40); WC(41); WC(42); WC(43); WC(44); WC(45); WC(46); WC(47); // WC(48); WC(49); WC(50); WC(51); WC(52); WC(53); WC(54); WC(55); // WC(56); WC(57); WC(58); WC(59); WC(60); WC(61); WC(62); WC(63); // // partially unrolled: for (size_t i = 0; i < 64; i += 16) { WC(i + 0); WC(i + 1); WC(i + 2); WC(i + 3); WC(i + 4); WC(i + 5); WC(i + 6); WC(i + 7); WC(i + 8); WC(i + 9); WC(i + 10); WC(i + 11); WC(i + 12); WC(i + 13); WC(i + 14); WC(i + 15); } // Add the compressed chunk to the current hash value ctx->h[0] += hs[0]; ctx->h[1] += hs[1]; ctx->h[2] += hs[2]; ctx->h[3] += hs[3]; ctx->h[4] += hs[4]; ctx->h[5] += hs[5]; ctx->h[6] += hs[6]; ctx->h[7] += hs[7]; } #undef WI #undef WE #undef WC #define MIN(a, b) (((a) < (b)) ? (a) : (b)) void sha256_push( sha256_t * const ctx, const uint8_t * const src, const size_t src_len ) { const size_t buf_left = 64 - ctx->buf_len; if (src_len >= buf_left) { // fill remaining buffer memcpy(ctx->buf + ctx->buf_len, src, buf_left); sha256_block(ctx); ctx->buf_len = 0; const size_t new_src_len = src_len - buf_left; const size_t num_blocks = new_src_len / 64; // process chunks for (size_t i = 0; i < num_blocks; i++) { memcpy(ctx->buf, src + buf_left + (64 * i), 64); sha256_block(ctx); } // copy remaining bytes to buffer const size_t new_buf_len = (new_src_len - 64 * num_blocks); memcpy(ctx->buf, src + buf_left + (64 * num_blocks), new_buf_len); ctx->buf_len = new_buf_len; } else { memcpy(ctx->buf + ctx->buf_len, src, src_len); ctx->buf_len += src_len; } // update byte count ctx->num_bytes += src_len; } static void sha256_push_u64( sha256_t * const ctx, const uint64_t val ) { const uint8_t buf[8] = { ((val >> 56) & 0xff), ((val >> 48) & 0xff), ((val >> 40) & 0xff), ((val >> 32) & 0xff), ((val >> 24) & 0xff), ((val >> 16) & 0xff), ((val >> 8) & 0xff), ((val) & 0xff), }; sha256_push(ctx, buf, sizeof(buf)); } // end of stream padding static const uint8_t PADDING[65] = { 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static void sha256_push_footer( sha256_t * const ctx ) { const uint64_t num_bytes = ctx->num_bytes; const size_t pad_len = (65 - ((num_bytes + 1 + 8) % 64)); // push padding sha256_push(ctx, PADDING, pad_len); // push length (in bits) sha256_push_u64(ctx, num_bytes * 8); } void sha256_fini( sha256_t * const ctx, uint8_t * const out ) { // push footer sha256_push_footer(ctx); // extract hash const uint8_t hash[32] = { WB(ctx, 0), WB(ctx, 1), WB(ctx, 2), WB(ctx, 3), WB(ctx, 4), WB(ctx, 5), WB(ctx, 6), WB(ctx, 7), }; memcpy(out, hash, sizeof(hash)); } void sha256( const uint8_t * const src, const size_t src_len, uint8_t * const dst ) { sha256_t ctx; sha256_init(&ctx); sha256_push(&ctx, src, src_len); sha256_fini(&ctx, dst); } // sha224 initial hash values // (the second 32 bits of the fractional parts of the square roots of // the 9th through 16th primes 23..53) static const uint32_t SHA224_INIT[8] = { 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4 }; void sha224_init(sha224_t * const ctx) { ctx->ctx.buf_len = 0; ctx->ctx.num_bytes = 0; memcpy(ctx->ctx.h, SHA224_INIT, sizeof(SHA224_INIT)); } void sha224_push( sha224_t * const sha224_ctx, const uint8_t * const src, const size_t src_len ) { sha256_t * const ctx = (sha256_t * const) sha224_ctx; sha256_push(ctx, src, src_len); } void sha224_fini( sha224_t * const sha224_ctx, uint8_t * const out ) { sha256_t * const ctx = (sha256_t * const) sha224_ctx; // push footer sha256_push_footer(ctx); // extract hash const uint8_t hash[28] = { WB(ctx, 0), WB(ctx, 1), WB(ctx, 2), WB(ctx, 3), WB(ctx, 4), WB(ctx, 5), WB(ctx, 6), }; memcpy(out, hash, sizeof(hash)); } void sha224( const uint8_t * const src, const size_t src_len, uint8_t * const dst ) { sha224_t ctx; sha224_init(&ctx); sha224_push(&ctx, src, src_len); sha224_fini(&ctx, dst); }