#include "sha256.h" #include // memcpy // initial hash values // (first 32 bits of the fractional parts of the square roots of the // first 8 primes 2..19): static const uint32_t H[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, }; // round constants // (first 32 bits of the fractional parts of the cube roots of the first // 64 primes 2..311): static const uint32_t K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; // rotate right // (src: https://blog.regehr.org/archives/1063) static inline uint32_t rr(const uint32_t v, const size_t n) { return (v << (32 - n)) | (v >> n); } void sha256_init(sha256_t * const ctx) { ctx->buf_len = 0; ctx->num_bytes = 0; memcpy(ctx->h, H, sizeof(H)); } // decode buffer data as 32-bit words (used for the first 16 words) #define WI(ctx, i) ( \ (((uint32_t) (ctx)->buf[4 * (i) + 0]) << 24) | \ (((uint32_t) (ctx)->buf[4 * (i) + 1]) << 16) | \ (((uint32_t) (ctx)->buf[4 * (i) + 2]) << 8) | \ ((uint32_t) (ctx)->buf[4 * (i) + 3]) \ ) static void sha256_block(sha256_t * const ctx) { // init first 16 words from buffer uint32_t w[64] = { WI(ctx, 0), WI(ctx, 1), WI(ctx, 2), WI(ctx, 3), WI(ctx, 4), WI(ctx, 5), WI(ctx, 6), WI(ctx, 7), WI(ctx, 8), WI(ctx, 9), WI(ctx, 10), WI(ctx, 11), WI(ctx, 12), WI(ctx, 13), WI(ctx, 14), WI(ctx, 15), 0, }; // Extend the first 16 words into the remaining 48 words w[16..63] of // the message schedule array // // for i from 16 to 63 // s0 := (w[i-15] rr 7) xor (w[i-15] rr 18) xor (w[i-15] rs 3) // s1 := (w[i- 2] rr 17) xor (w[i- 2] rr 19) xor (w[i- 2] rs 10) // w[i] := w[i-16] + s0 + w[i-7] + s1 for (size_t i = 16; i < 64; i++) { const uint32_t w2 = w[i - 2], w7 = w[i - 7], w15 = w[i - 15], w16 = w[i - 16], s0 = rr(w15, 7) ^ rr(w15, 18) ^ (w15 >> 3), s1 = rr(w2, 17) ^ rr(w2, 19) ^ (w2 >> 10); w[i] = w16 + s0 + w7 + s1; } // Initialize working variables to current hash value uint32_t hs[8] = { ctx->h[0], ctx->h[1], ctx->h[2], ctx->h[3], ctx->h[4], ctx->h[5], ctx->h[6], ctx->h[7], }; // Compression function main loop // // for i from 0 to 63 // S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25) // ch := (e and f) xor ((not e) and g) // temp1 := h + S1 + ch + k[i] + w[i] // S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22) // maj := (a and b) xor (a and c) xor (b and c) // temp2 := S0 + maj // // h := g // g := f // f := e // e := d + temp1 // d := c // c := b // b := a // a := temp1 + temp2 for (size_t i = 0; i < 64; i++) { const uint32_t s1 = rr(hs[4], 6) ^ rr(hs[4], 11) ^ rr(hs[4], 25), ch = (hs[4] & hs[5]) ^ ((~(hs[4])) & hs[6]), t0 = hs[7] + s1 + ch + K[i] + w[i], s0 = rr(hs[0], 2) ^ rr(hs[0], 13) ^ rr(hs[0], 22), mj = (hs[0] & hs[1]) ^ (hs[0] & hs[2]) ^ (hs[1] & hs[2]), t1 = s0 + mj; hs[7] = hs[6]; hs[6] = hs[5]; hs[5] = hs[4]; hs[4] = hs[3] + t0; hs[3] = hs[2]; hs[2] = hs[1]; hs[1] = hs[0]; hs[0] = t0 + t1; } // Add the compressed chunk to the current hash value ctx->h[0] += hs[0]; ctx->h[1] += hs[1]; ctx->h[2] += hs[2]; ctx->h[3] += hs[3]; ctx->h[4] += hs[4]; ctx->h[5] += hs[5]; ctx->h[6] += hs[6]; ctx->h[7] += hs[7]; } #undef WI void sha256_push( sha256_t * const ctx, const uint8_t * const src, const size_t src_len ) { for (size_t i = 0; i < src_len; i++) { ctx->buf[ctx->buf_len] = src[i]; ctx->buf_len++; if (ctx->buf_len == 64) { sha256_block(ctx); ctx->buf_len = 0; } } ctx->num_bytes += src_len; } static void sha256_push_u64( sha256_t * const ctx, const uint64_t val ) { const uint8_t buf[8] = { ((val >> 56) & 0xff), ((val >> 48) & 0xff), ((val >> 40) & 0xff), ((val >> 32) & 0xff), ((val >> 24) & 0xff), ((val >> 16) & 0xff), ((val >> 8) & 0xff), ((val) & 0xff), }; sha256_push(ctx, buf, sizeof(buf)); } // end of stream padding static const uint8_t PADDING[65] = { 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define WB(ctx, i) \ ((ctx)->h[i] >> 24) & 0xff, \ ((ctx)->h[i] >> 16) & 0xff, \ ((ctx)->h[i] >> 8) & 0xff, \ ((ctx)->h[i]) & 0xff void sha256_fini( sha256_t * const ctx, uint8_t * const out ) { const uint64_t num_bytes = ctx->num_bytes; const size_t pad_len = (65 - ((num_bytes + 1 + 8) % 64)); // fprintf(stderr, "ctx->num_bytes (before pad) = %lu\n", ctx->num_bytes); // push padding sha256_push(ctx, PADDING, pad_len); // fprintf(stderr, "ctx->num_bytes (before len) = %lu\n", ctx->num_bytes); // push length (in bits) sha256_push_u64(ctx, num_bytes * 8); // fprintf(stderr, "ctx->num_bytes (after len) = %lu\n", ctx->num_bytes); // extract hash const uint8_t hash[32] = { WB(ctx, 0), WB(ctx, 1), WB(ctx, 2), WB(ctx, 3), WB(ctx, 4), WB(ctx, 5), WB(ctx, 6), WB(ctx, 7), }; memcpy(out, hash, sizeof(hash)); } #undef WB void sha256( const uint8_t * const src, const size_t src_len, uint8_t * const dst ) { sha256_t ctx; sha256_init(&ctx); sha256_push(&ctx, src, src_len); sha256_fini(&ctx, dst); }