1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
//
// Benchmark hash functions and extendable output functions (XOFs), then
// print metadata to standard error and print a table of median cycles
// per byte (cpb) for each function and input message length to standard
// output in CSV format.
//
// Requires libcpucycles (https://cpucycles.cr.yp.to/).
//
// Note: You may need to adjust your system configuration or run `bench`
// as root to grant libcpucycles access to the high-resolution cycle
// counter. See the following URL for details:
//
// https://cpucycles.cr.yp.to/security.html
//
#include <stdlib.h> // exit(), qsort()
#include <stdio.h> // printf()
#include <string.h> // memcmp()
#include <math.h> // sqrt(), pow()
#include <cpucycles.h> // cpucycles()
#include "sha3.h" // sha3_*(), shake*()
#include "rand-bytes.h" // rand_bytes()
// default number of trials
#define NUM_TRIALS 100000
// input sizes (used for hashes and xofs)
static const size_t SRC_LENS[] = { 64, 256, 1024, 4096, 16384 };
#define NUM_SRC_LENS (sizeof(SRC_LENS)/sizeof(SRC_LENS[0]))
// output sizes (used for xofs)
static const size_t DST_LENS[] = { 32 };
#define NUM_DST_LENS (sizeof(DST_LENS)/sizeof(DST_LENS[0]))
// get maximum source length
static size_t get_max_src_len(void) {
size_t r = 0;
for (size_t i = 0; i < NUM_SRC_LENS; i++) {
r = (SRC_LENS[i] > r) ? SRC_LENS[i] : r;
}
return r;
}
// Aggregate statistics for a series of tests.
typedef struct {
// min/max/median times
long long lo, hi, median;
// mean/stddev, median_cpb
double mean, stddev, median_cpb;
} stats_t;
static void *checked_calloc(const char *name, const size_t nmemb, const size_t size) {
// alloc keygen times
void *mem = calloc(nmemb, size);
if (!mem) {
fprintf(stderr, "%s: calloc() failed\n", name);
exit(-1);
}
return mem;
}
// Callback for `qsort()` to sort observed times in ascending order.
static int sort_asc_cb(const void *ap, const void *bp) {
const long long *a = ap, *b = bp;
return *a - *b;
}
// Get summary statistics of a series of test times.
static stats_t get_stats(long long * const vals, const size_t num_vals, const size_t len) {
stats_t stats = { 0 };
// sort values in ascending order (used for min, max, and median)
qsort(vals, num_vals, sizeof(long long), sort_asc_cb);
// get low, high, and median
stats.lo = vals[0];
stats.hi = vals[num_vals - 1];
stats.median = vals[num_vals / 2];
// calculate median cpb
stats.median_cpb = 1.0 * stats.median / len;
// calculate mean
for (size_t i = 0; i < num_vals; i++) {
stats.mean += vals[i];
}
stats.mean /= num_vals;
// calculate standard deviation
for (size_t i = 0; i < num_vals; i++) {
stats.stddev += pow(stats.mean - vals[i], 2);
}
stats.stddev = sqrt(stats.stddev / num_vals);
// return stats
return stats;
}
// define xof benchmark function
#define DEF_BENCH_XOF(FN) \
static void bench_ ## FN (double * const cpbs, const size_t num_trials, const size_t dst_len) { \
/* allocate times, src, and dst buffers */ \
long long *times = checked_calloc(__func__, num_trials, sizeof(long long)); \
uint8_t *src = checked_calloc(__func__, 1, get_max_src_len()); \
uint8_t *dst = checked_calloc(__func__, num_trials, dst_len); \
\
for (size_t i = 0; i < NUM_SRC_LENS; i++) { \
const size_t src_len = SRC_LENS[i]; /* get source length */ \
\
/* run trials */ \
for (size_t j = 0; j < num_trials; j++) { \
/* generate random source data */ \
rand_bytes(src, src_len); \
\
/* call function */ \
const long long t0 = cpucycles(); \
FN (src, src_len, dst + (j * dst_len), dst_len); \
const long long t1 = cpucycles() - t0; \
\
/* save time */ \
times[j] = t1; \
} \
\
/* generate summary stats, save cpb */ \
cpbs[i] = 1.0 * get_stats(times, num_trials, src_len).median_cpb; \
} \
\
/* free buffers */ \
free(times); \
free(src); \
free(dst); \
}
// define hash benchmark function
#define DEF_BENCH_HASH(FN, OUT_LEN) \
static void bench_ ## FN (double * const cpbs, const size_t num_trials) { \
/* allocate times, src, and dst buffers */ \
long long *times = checked_calloc(__func__, num_trials, sizeof(long long)); \
uint8_t *src = checked_calloc(__func__, 1, get_max_src_len()); \
uint8_t *dst = checked_calloc(__func__, num_trials, OUT_LEN); \
\
for (size_t i = 0; i < NUM_SRC_LENS; i++) { \
const size_t src_len = SRC_LENS[i]; /* get source length */ \
\
/* run trials */ \
for (size_t j = 0; j < num_trials; j++) { \
/* generate random source data */ \
rand_bytes(src, src_len); \
\
/* call function */ \
const long long t0 = cpucycles(); \
FN (src, src_len, dst + (j * OUT_LEN)); \
const long long t1 = cpucycles() - t0; \
\
/* save time */ \
times[j] = t1; \
} \
\
/* generate summary stats, save cpb */ \
cpbs[i] = 1.0 * get_stats(times, num_trials, src_len).median_cpb; \
} \
\
/* free buffers */ \
free(times); \
free(src); \
free(dst); \
}
// define xof benchmarks
DEF_BENCH_XOF(shake128)
DEF_BENCH_XOF(shake256)
// define hash benchmarks
DEF_BENCH_HASH(sha3_224, 28)
DEF_BENCH_HASH(sha3_256, 32)
DEF_BENCH_HASH(sha3_384, 48)
DEF_BENCH_HASH(sha3_512, 64)
// print function stats to standard output as CSV row.
static void print_row(const char *name, const size_t dst_len, double * const cpbs) {
printf("%s,%zu", name, dst_len);
for (size_t i = 0; i < NUM_SRC_LENS; i++) {
printf(",%.1f", cpbs[i]);
}
fputs("\n", stdout);
}
int main(int argc, char *argv[]) {
double cpbs[NUM_SRC_LENS];
// get number of trials from first command-line argument, or fall back
// to default if no argument was provided
const size_t num_trials = (argc > 1) ? atoi(argv[1]) : NUM_TRIALS;
if (num_trials < 2) {
fprintf(stderr, "num_trials must be greater than 1\n");
return -1;
}
// print metadata to stderr
fprintf(stderr,"info: cpucycles: version=%s implementation=%s persecond=%lld\ninfo: backend=%s num_trials=%zu src_lens", cpucycles_version(), cpucycles_implementation(), cpucycles_persecond(), sha3_backend(), num_trials);
for (size_t i = 0; i < NUM_SRC_LENS; i++) {
fprintf(stderr, "%s%zu", (i > 0) ? "," : "=", SRC_LENS[i]);
}
fputs(" dst_lens", stderr);
for (size_t i = 0; i < NUM_DST_LENS; i++) {
fprintf(stderr, "%s%zu", (i > 0) ? "," : "=", DST_LENS[i]);
}
fputs("\n", stderr);
// print column headers to stdout
fputs("function,dst_len", stdout);
for (size_t i = 0; i < NUM_SRC_LENS; i++) {
printf(",%zu", SRC_LENS[i]);
}
fputs("\n", stdout);
// sha3-224
bench_sha3_224(cpbs, num_trials);
print_row("sha3_224", 28, cpbs);
// sha3-256
bench_sha3_256(cpbs, num_trials);
print_row("sha3_256", 32, cpbs);
// sha3-384
bench_sha3_384(cpbs, num_trials);
print_row("sha3_384", 48, cpbs);
// sha3-512
bench_sha3_512(cpbs, num_trials);
print_row("sha3_512", 64, cpbs);
// test xofs
for (size_t i = 0; i < NUM_DST_LENS; i++) {
const size_t dst_len = DST_LENS[i];
// shake128
bench_shake128(cpbs, num_trials, dst_len);
print_row("shake128", dst_len, cpbs);
// shake256
bench_shake256(cpbs, num_trials, dst_len);
print_row("shake256", dst_len, cpbs);
}
// return success
return 0;
}
|