aboutsummaryrefslogtreecommitdiff
path: root/km-solve.c
diff options
context:
space:
mode:
Diffstat (limited to 'km-solve.c')
-rw-r--r--km-solve.c59
1 files changed, 37 insertions, 22 deletions
diff --git a/km-solve.c b/km-solve.c
index 2a4de16..8a70a48 100644
--- a/km-solve.c
+++ b/km-solve.c
@@ -5,6 +5,8 @@
#include "util.h"
#include "km.h"
+#define MIN_CLUSTER_DISTANCE 0.00001
+
// alloc and initialize row map
static km_row_map_t *
km_row_map_init(
@@ -19,9 +21,11 @@ km_row_map_init(
return false;
}
- // init row map by setting the maximum distance
+ // init row map
for (size_t i = 0; i < num_rows; i++) {
+ // setting distances to maximum
row_map[i].d2 = FLT_MAX;
+ row_map[i].d2_near = FLT_MAX;
}
// return row map
@@ -84,6 +88,13 @@ km_solve(
// flag change
changed = true;
}
+
+ if ((row_map[j].cluster != i) && (d2 < row_map[j].d2_near)) {
+ row_map[j].d2_near = d2;
+
+ // flag change
+ changed = true;
+ }
}
}
@@ -131,44 +142,48 @@ km_solve(
if (cbs && cbs->on_stats) {
float sum = 0,
- means[num_clusters],
- variances[num_clusters];
+ silouette = 0,
+ mean_dists[num_clusters],
+ mean_nears[num_clusters];
- memset(means, 0, sizeof(float) * num_clusters);
- memset(variances, 0, sizeof(float) * num_clusters);
+ memset(mean_dists, 0, sizeof(mean_dists));
+ memset(mean_nears, 0, sizeof(mean_nears));
// calculate sum of distances across all clusters
for (size_t i = 0; i < set->num_rows; i++) {
sum += row_map[i].d2;
}
- // calculate mean distances
+ // calculate mean numerators and silouette
for (size_t i = 0; i < set->num_rows; i++) {
- means[row_map[i].cluster] += row_map[i].d2;
- }
- // finalize means
- for (size_t i = 0; i < num_clusters; i++) {
- means[i] = (cs->ints[i]) ? (sqrt(means[i]) / cs->ints[i]) : 0;
- }
+ // distance squared (d2) to center of this cluster
+ mean_dists[row_map[i].cluster] += row_map[i].d2;
- // calculate variances
- for (size_t i = 0; i < set->num_rows; i++) {
- const size_t cluster = row_map[i].cluster;
- const float variance = (sqrt(row_map[i].d2) - means[cluster]) *
- (sqrt(row_map[i].d2) - means[cluster]);
- variances[cluster] += variance;
+ // distance squared (d2) to center of nearest cluster
+ mean_nears[row_map[i].cluster] += row_map[i].d2_near;
+
+ // calculate silouette denominator
+ const float delta = row_map[i].d2_near - row_map[i].d2;
+ if (fabsf(delta) > MIN_CLUSTER_DISTANCE) {
+ silouette += delta / MAX(row_map[i].d2, row_map[i].d2_near);
+ }
}
- // finalize variances
+ // finalize means (divide by row count)
for (size_t i = 0; i < num_clusters; i++) {
- variances[i] = (cs->ints[i]) ? (variances[i] / cs->ints[i]) : 0;
+ mean_dists[i] = (cs->ints[i]) ? (sqrt(mean_dists[i]) / cs->ints[i]) : 0;
+ mean_nears[i] = (cs->ints[i]) ? (sqrt(mean_nears[i]) / cs->ints[i]) : 0;
}
+ // finalize silouette
+ silouette /= set->num_rows;
+
// build stats
const km_solve_stats_t stats = {
.sum = sum,
- .means = means,
- .variances = variances,
+ .silouette = silouette,
+ .mean_dists = mean_dists,
+ .mean_nears = mean_nears,
.num_clusters = num_clusters,
};