diff options
Diffstat (limited to 'main.c')
-rw-r--r-- | main.c | 154 |
1 files changed, 87 insertions, 67 deletions
@@ -14,7 +14,7 @@ #define MAX_CLUSTERS 10 #define NUM_TESTS 100 -#define MAX_BEST 4 +#define MAX_BEST 10 #define IM_WIDTH 128 #define IM_HEIGHT 128 @@ -26,6 +26,10 @@ typedef struct { } best_item_t; typedef struct { + // cluster initialization method + km_init_type_t init_type; + + // random number source km_rand_t rs; struct { @@ -35,9 +39,10 @@ typedef struct { size_t num_empty_clusters; } rows[MAX_CLUSTERS - 2]; + // best clusters best_item_t best[MAX_BEST]; size_t num_best; -} find_t; +} ctx_t; static int best_score_cmp( @@ -47,32 +52,32 @@ best_score_cmp( const best_item_t * const a = ap; const best_item_t * const b = bp; - return (a->score > b->score) ? -1 : 1; + return (a->score > b->score) ? 1 : -1; } static void -find_sort_best( - find_t * const find_data +ctx_best_sort( + ctx_t * const ctx ) { // sort best sets by ascending score (worst to best) qsort( - find_data->best, - (find_data->num_best % MAX_BEST), + ctx->best, + (ctx->num_best % MAX_BEST), sizeof(best_item_t), best_score_cmp ); } static void -find_each_best( - const find_t * const find_data, +ctx_best_each( + const ctx_t * const ctx, void (*on_best)(const km_set_t * const, const size_t, const float, void *), void * const cb_data ) { if (on_best) { // walk best sets and emit each one - for (size_t i = 0; i < MIN(find_data->num_best, MAX_BEST); i++) { - on_best(&(find_data->best[i].set), i, find_data->best[i].score, cb_data); + for (size_t i = 0; i < MIN(ctx->num_best, MAX_BEST); i++) { + on_best(&(ctx->best[i].set), i, ctx->best[i].score, cb_data); } } } @@ -84,7 +89,7 @@ load_on_shape( ) { km_set_t * const set = cb_data; - D("shape: %zu floats, %zu ints", shape->num_floats, shape->num_ints); + // D("shape: %zu floats, %zu ints", shape->num_floats, shape->num_ints); // init set if (!km_set_init(set, shape, 100)) { @@ -131,12 +136,22 @@ LOAD_CBS = { static bool find_on_init( km_set_t * const cs, - const size_t num_floats, const size_t num_clusters, + const km_set_t * const set, void *cb_data ) { - find_t *data = cb_data; - return km_set_init_rand_clusters(cs, num_floats, num_clusters, &(data->rs)); + ctx_t * const ctx = cb_data; + km_rand_t * const rs = &(ctx->rs); + + switch(ctx->init_type) { + case KM_INIT_TYPE_RAND: + return km_init_rand(cs, num_clusters, set->shape.num_floats, rs); + case KM_INIT_TYPE_FORGY: + return km_init_forgy(cs, num_clusters, set, rs); + default: + die("unknown cluster init method"); + return false; + } } static bool @@ -154,13 +169,13 @@ find_on_data( const km_find_data_t * const data, void *cb_data ) { - find_t * const find_data = cb_data; + ctx_t * const ctx = cb_data; const size_t ofs = data->num_clusters - 2; - find_data->rows[ofs].distance += data->mean_distance; - find_data->rows[ofs].variance += data->mean_variance; - find_data->rows[ofs].cluster_size += data->mean_cluster_size; - find_data->rows[ofs].num_empty_clusters += data->num_empty_clusters; + ctx->rows[ofs].distance += data->mean_distance; + ctx->rows[ofs].variance += data->mean_variance; + ctx->rows[ofs].cluster_size += data->mean_cluster_size; + ctx->rows[ofs].num_empty_clusters += data->num_empty_clusters; } static bool @@ -169,17 +184,17 @@ find_on_best( const km_set_t * const cs, void *cb_data ) { - find_t * const find_data = cb_data; + ctx_t * const ctx = cb_data; D("best score = %0.3f, num_clusters = %zu", score, cs->num_rows); // get pointer to destination set // (note: data->best is a ring buffer) - km_set_t *dst = &(find_data->best[find_data->num_best % MAX_BEST].set); + km_set_t * const dst = &(ctx->best[ctx->num_best % MAX_BEST].set); - if (find_data->num_best >= MAX_BEST) { + if (ctx->num_best >= MAX_BEST) { // finalize old best data set - // D("finalizing old best %zu", find_data->num_best); + // D("finalizing old best %zu", ctx->num_best); km_set_fini(dst); } @@ -189,7 +204,7 @@ find_on_best( } // increment best count - find_data->num_best++; + ctx->num_best++; // return success return true; @@ -207,33 +222,22 @@ FIND_CBS = { .on_best = find_on_best, }; -static float -get_score( - const size_t ofs, - const find_t * const find_data -) { - // const size_t num_clusters = ofs + 2; - const float mean_distance = find_data->rows[ofs].distance / NUM_TESTS, - mean_empty = 1.0 * find_data->rows[ofs].num_empty_clusters / NUM_TESTS; - - return 1.0 / (mean_distance + mean_empty); -} - static void print_csv_row( - const size_t i, - const find_t * const find_data + const ctx_t * const ctx, + const size_t i ) { const size_t num_clusters = i + 2; - const float mean_distance = find_data->rows[i].distance / NUM_TESTS, - mean_variance = find_data->rows[i].variance / NUM_TESTS, - mean_cluster_size = find_data->rows[i].cluster_size / NUM_TESTS, - mean_empty_clusters = 1.0 * find_data->rows[i].num_empty_clusters / NUM_TESTS; + const float mean_distance = ctx->rows[i].distance / NUM_TESTS, + mean_variance = ctx->rows[i].variance / NUM_TESTS, + mean_cluster_size = ctx->rows[i].cluster_size / NUM_TESTS, + mean_empty_clusters = 1.0 * ctx->rows[i].num_empty_clusters / NUM_TESTS, + score = km_score(mean_distance, mean_empty_clusters); // print result printf("%zu,%0.3f,%0.3f,%0.3f,%0.3f,%0.3f\n", num_clusters, - get_score(i, find_data), + score, mean_distance, mean_variance, mean_cluster_size, @@ -243,7 +247,7 @@ print_csv_row( static void print_csv( - const find_t * const find_data + const ctx_t * const ctx ) { // print headers printf( @@ -256,7 +260,7 @@ print_csv( ); for (size_t i = 0; i < MAX_CLUSTERS - 2; i++) { - print_csv_row(i, find_data); + print_csv_row(ctx, i); } } @@ -269,36 +273,36 @@ save_on_best( const float score, void * const cb_data ) { + UNUSED(score); UNUSED(cb_data); - // convert rank to channel brightness const uint8_t ch = 0x66 + (0xff - 0x66) * (1.0 * rank) / (MAX_BEST - 1); const uint32_t color = (ch & 0xff) << 16; // const uint32_t color = 0xff0000; - D("rank = %zu, score = %0.3f, size = %zu, color = %06x", rank, score, set->num_rows, color); + // D("rank = %zu, score = %0.3f, size = %zu, color = %06x", rank, score, set->num_rows, color); // draw clusters km_set_draw(set, im_data, IM_WIDTH, IM_HEIGHT, 3, color); } static void -save_png( +ctx_save_png( + const ctx_t * const ctx, const char * const png_path, - const km_set_t * const set, - const find_t * const find_data + const km_set_t * const set ) { // clear image data to white memset(im_data, 0xff, sizeof(im_data)); - // draw red points + // draw data points km_set_draw(set, im_data, IM_WIDTH, IM_HEIGHT, 1, 0x000000); if (!stbi_write_png(png_path, IM_WIDTH, IM_HEIGHT, 3, im_data, IM_STRIDE)) { die("stbi_write_png(\"%s\")", png_path); } // draw best cluster points - find_each_best(find_data, save_on_best, NULL); + ctx_best_each(ctx, save_on_best, NULL); // save png if (!stbi_write_png(png_path, IM_WIDTH, IM_HEIGHT, 3, im_data, IM_STRIDE)) { @@ -306,45 +310,61 @@ save_png( } } +static const char USAGE_FORMAT[] = + "Usage: %s [init] [data_path] <png_path>\n" + "\n" + "Arguments:\n" + "* init: Cluster init method (one of \"rand\" or \"set\").\n" + "* data_path: Path to input data file.\n" + "* png_path: Path to output file (optional).\n" + ""; + int main(int argc, char *argv[]) { - // check command-line - if (argc < 2) { - fprintf(stderr, "Usage: %s <data_path> <png_path>\n", argv[0]); + // check command-line arguments + if (argc < 3) { + fprintf(stderr, USAGE_FORMAT, argv[0]); return EXIT_FAILURE; } + // get command-line arguments + const char * const init_type_name = argv[1]; + const char * const data_path = argv[2]; + const char * const png_path = (argc > 3) ? argv[3] : NULL; + // init random seed srand(getpid()); - // init find data - find_t find_data; - memset(&find_data, 0, sizeof(find_t)); - km_rand_init_system(&(find_data.rs)); + // init context + ctx_t ctx; + memset(&ctx, 0, sizeof(ctx_t)); + km_rand_init_system(&(ctx.rs)); + ctx.init_type = km_get_init_type(init_type_name); // init data set km_set_t set; - if (!km_load_path(argv[1], &LOAD_CBS, &set)) { - die("km_load_path() failed"); + if (!km_load_path(data_path, &LOAD_CBS, &set)) { + die("km_load_path(\"%s\") failed", data_path); } + // init data set if (!km_set_normalize(&set)) { die("km_set_normalize() failed"); } // find best solutions - if (!km_find(&set, &FIND_CBS, &find_data)) { + if (!km_find(&set, &FIND_CBS, &ctx)) { die("km_find()"); } // print csv - print_csv(&find_data); + print_csv(&ctx); // sort best results from lowest to highest - find_sort_best(&find_data); + ctx_best_sort(&ctx); - if (argc > 2) { + if (png_path) { // save png of normalized data set and best clusters - save_png(argv[2], &set, &find_data); + ctx_save_png(&ctx, png_path, &set); } // finalize data set |