1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
#include <stdbool.h> // bool
#include <stdint.h> // size_t
#include <string.h> // memcpy()
#include <stdlib.h> // rand()
#include <float.h> // FLT_MAX
#include <math.h> // sqrt()
#include "km.h"
#define MIN_ROWS (4096 / sizeof(float))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define UNUSED(a) ((void) (a))
#define MIN_CLUSTER_DISTANCE 0.0001
// calculate squared euclidean distance between two points
static float
distance_squared(
const size_t num_floats,
const float * const a,
const float * const b
) {
float r = 0.0;
for (size_t i = 0; i < num_floats; i++) {
r += (b[i] - a[i]) * (b[i] - a[i]);
}
// return squared distance
return r;
}
// fill buffer with N random floats
bool
km_rand_src_fill(
km_rand_src_t * const rs,
const size_t num_floats,
float * const floats
) {
return rs->cbs->fill(rs, num_floats, floats);
}
// finalize random source
void
km_rand_src_fini(
km_rand_src_t * const rs
) {
if (rs->cbs->fini) {
rs->cbs->fini(rs);
}
}
// fill callback for system random source
static bool
rand_src_system_on_fill(
km_rand_src_t * const rs,
const size_t num_floats,
float * const floats
) {
UNUSED(rs);
// generate random cluster centers
for (size_t i = 0; i < num_floats; i++) {
floats[i] = 1.0 * rand() / RAND_MAX;
}
// return success
return true;
}
// system random source callbacks
static const km_rand_src_cbs_t
RAND_SRC_SYSTEM_CBS = {
.fill = rand_src_system_on_fill,
.fini = NULL,
};
// init system random source (uses system rand())
void
km_rand_src_system_init(
km_rand_src_t * const rs
) {
rs->cbs = &RAND_SRC_SYSTEM_CBS;
rs->data = NULL;
}
// grow data set
static bool
km_set_grow(
km_set_t * const set,
const size_t capacity
) {
// alloc floats
const size_t num_floats = set->shape.num_floats * capacity;
float * const floats = malloc(sizeof(float) * num_floats);
if (!floats) {
// return failure
return false;
}
// alloc ints
const size_t num_ints = set->shape.num_ints * capacity;
int * const ints = malloc(sizeof(int) * num_ints);
if (!ints) {
// return failure
return false;
}
set->floats = floats;
set->ints = ints;
set->capacity = capacity;
// return success
return true;
}
// init data set with shape and initial size
bool
km_set_init(
km_set_t * const set,
const km_shape_t * const shape,
const size_t row_capacity
) {
set->floats = NULL;
set->ints = NULL;
set->shape = *shape;
set->num_rows = 0;
set->capacity = 0;
return km_set_grow(set, MAX(MIN_ROWS, row_capacity + 1));
}
// finalize data set
void
km_set_fini(km_set_t * const set) {
if (set->floats) {
// free floats
free(set->floats);
set->floats = NULL;
}
if (set->ints) {
// free ints
free(set->ints);
set->ints = NULL;
}
// shrink capacity
set->capacity = 0;
}
// append rows to data set, growing set if necessary
bool
km_set_push_rows(
km_set_t * const set,
const size_t num_rows,
const float * const floats,
const int * const ints
) {
const size_t capacity_needed = set->num_rows + num_rows;
// FIXME: potential overflow here
if (capacity_needed >= set->capacity) {
// crappy growth algorithm
const size_t new_capacity = 2 * capacity_needed + 1;
// resize storage
if (!km_set_grow(set, MAX(MIN_ROWS, new_capacity))) {
return false;
}
}
// copy floats
const size_t num_floats = set->shape.num_floats;
if (num_floats > 0) {
float * const dst = set->floats + num_floats * set->num_rows;
const size_t stride = sizeof(float) * num_floats;
// copy floats
memcpy(dst, floats, stride * num_rows);
}
// copy ints
const size_t num_ints = set->shape.num_ints;
if (num_ints > 0) {
int * const dst = set->ints + num_ints * set->num_rows;
const size_t stride = sizeof(int) * num_ints;
// copy ints
memcpy(dst, ints, stride * num_rows);
}
// increment row count
set->num_rows += num_rows;
// return success
return true;
}
// get row from data set
float *
km_set_get_row(
const km_set_t * const set,
const size_t i
) {
const size_t num_floats = set->shape.num_floats;
return set->floats + i * num_floats;
}
typedef struct {
float d2;
size_t cluster;
} row_map_item_t;
// init a cluster set of size N from a data set by picking random
// cluster centers
bool
km_clusters_rand_init(
km_set_t * const cs,
const size_t num_floats,
const size_t num_clusters,
km_rand_src_t * const rs
) {
// init cluster shape
const km_shape_t shape = {
.num_floats = num_floats,
.num_ints = 1,
};
// generate random cluster centers
float floats[num_floats * num_clusters];
if (!km_rand_src_fill(rs, num_floats * num_clusters, floats)) {
// return failure
return false;
}
// FIXME: should probably be heap-allocated
int ints[num_clusters];
memset(ints, 0, sizeof(ints));
// init cluster set
if (!km_set_init(cs, &shape, num_clusters)) {
// return failure
return false;
}
// add data, return result
return km_set_push_rows(cs, num_clusters, floats, ints);
}
// use k-means to iteratively update the cluster centroids until there
// are no more changes to the centroids
bool
km_clusters_solve(
km_set_t * const cs,
const km_set_t * const set,
const km_clusters_solve_cbs_t * const cbs,
void * const cb_data
) {
const size_t num_clusters = cs->num_rows,
num_floats = set->shape.num_floats;
// row map: row => distance, cluster ID
row_map_item_t *row_map = malloc(sizeof(row_map_item_t) * set->num_rows);
if (!row_map) {
// return failure
return false;
}
// init row map by setting the maximum distance
for (size_t i = 0; i < set->num_rows; i++) {
row_map[i].d2 = FLT_MAX;
}
// calculate clusters by doing the following:
// * walk all clusters and all rows
// * if we find a closer cluster, move row to cluster
// * if there were changes to any cluster, then calculate a new
// centroid for each cluster by averaging the cluster rows
// * repeat until there are no more changes
bool changed = false;
do {
// no changes yet
changed = false;
for (size_t i = 0; i < num_clusters; i++) {
// get the floats for this cluster
const float * const floats = km_set_get_row(cs, i);
for (size_t j = 0; j < set->num_rows; j++) {
const float * const row_floats = km_set_get_row(set, j);
// calculate the distance squared between these clusters
const float d2 = distance_squared(num_floats, floats, row_floats);
if (d2 < row_map[j].d2) {
// row is closer to this cluster, update distance and cluster
row_map[j].d2 = d2;
row_map[j].cluster = i;
// flag change
changed = true;
}
}
}
if (changed) {
// if there were changes, then we need to calculate the new
// cluster centers
// calculate new center
for (size_t i = 0; i < num_clusters; i++) {
size_t num_rows = 0;
float * const floats = km_set_get_row(cs, i);
memset(floats, 0, sizeof(float) * num_floats);
for (size_t j = 0; j < set->num_rows; j++) {
const float * const row_floats = km_set_get_row(set, j);
if (row_map[j].cluster == i) {
// calculate numerator for average
for (size_t k = 0; k < num_floats; k++) {
floats[k] += row_floats[k];
}
// increment denominator for average
num_rows++;
}
}
// save number of rows in this cluster
cs->ints[i] = num_rows;
if (num_rows > 0) {
for (size_t k = 0; k < num_floats; k++) {
// divide by denominator to get average
floats[k] /= num_rows;
}
}
}
}
if (cbs && cbs->on_step) {
// pass clusters to step callback
cbs->on_step(cs, cb_data);
}
} while (changed);
if (cbs && cbs->on_step) {
float means[num_clusters];
memset(means, 0, sizeof(float) * num_clusters);
// calculate mean distances
for (size_t i = 0; i < set->num_rows; i++) {
means[row_map[i].cluster] += row_map[i].d2;
}
// calculate mean distances
for (size_t i = 0; i < num_clusters; i++) {
means[i] = (cs->ints[i]) ? (sqrt(means[i]) / cs->ints[i]) : 0;
}
// emit means
cbs->on_means(cs, means, num_clusters, cb_data);
}
// free row_map
free(row_map);
// return success
return true;
}
typedef struct {
float sum;
size_t num_empty_clusters;
} search_test_data_t;
static void
search_test_on_means(
const km_set_t * const set,
const float * const means,
const size_t num_clusters,
void * const cb_data
) {
search_test_data_t *test_data = cb_data;
UNUSED(set);
// calculate numerator for the average distance across all clusters in
// this test
for (size_t i = 0; i < num_clusters; i++) {
if (fabsf(means[i]) > MIN_CLUSTER_DISTANCE) {
test_data->sum += means[i];
} else {
test_data->num_empty_clusters++;
}
}
}
static const km_clusters_solve_cbs_t
SEARCH_TEST_CBS = {
.on_means = search_test_on_means,
};
bool
km_search(
const km_set_t * const set,
const size_t max_clusters,
const size_t num_tests,
const km_search_row_cb_t on_row,
void *cb_data
) {
// init random source
km_rand_src_t rs;
km_rand_src_system_init(&rs);
for (size_t i = 2; i < max_clusters; i++) {
for (size_t j = 0; j < num_tests; j++) {
// init cluster set
km_set_t cs;
if (!km_clusters_rand_init(&cs, set->shape.num_floats, i, &rs)) {
// return failure
return false;
}
// init test data
search_test_data_t data = {
.sum = 0,
.num_empty_clusters = 0,
};
// solve test
if (!km_clusters_solve(&cs, set, &SEARCH_TEST_CBS, &data)) {
// return failure
return false;
}
if (on_row) {
// calculate mean
const float mean = (data.num_empty_clusters < i) ? (data.sum / (i - data.num_empty_clusters)) : 0;
// init search result row
km_search_row_t row = {
.cluster_set = &cs,
.num_clusters = i,
.mean_distance = mean,
.num_empty_clusters = data.num_empty_clusters,
};
// emit row
on_row(&row, cb_data);
}
// free cluster set
km_set_fini(&cs);
}
}
// return success
return true;
}
|