aboutsummaryrefslogtreecommitdiff
path: root/km.c
blob: a6c9301e7eebf53d7cb5a5b8b543523e96ed1d99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#include <stdbool.h> // bool
#include <stdint.h> // size_t
#include <string.h> // memcpy()
#include <stdlib.h> // rand()
#include <float.h> // FLT_MAX
#include <math.h> // sqrt()
#include "km.h"

#define MIN_ROWS (4096 / sizeof(float))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define UNUSED(a) ((void) (a))

// calculate squared euclidean distance between two points
static float
distance_squared(
  const size_t num_floats,
  const float * const a,
  const float * const b
) {
  float r = 0.0;

  for (size_t i = 0; i <num_floats; i++) {
    r += (b[i] - a[i]) * (b[i] - a[i]);
  }

  // return squared distance
  return r;
}

// fill buffer with N random floats
bool
km_rand_src_fill(
  km_rand_src_t * const rs,
  const size_t num_floats,
  float * const floats
) {
  return rs->cbs->fill(rs, num_floats, floats);
}

// finalize random source
void
km_rand_src_fini(
  km_rand_src_t * const rs
) {
  if (rs->cbs->fini) {
    rs->cbs->fini(rs);
  }
}

// fill callback for system random source
static bool
rand_src_system_on_fill(
  km_rand_src_t * const rs,
  const size_t num_floats,
  float * const floats
) {
  UNUSED(rs);

  // generate random cluster centers
  for (size_t i = 0; i < num_floats; i++) {
    floats[i] = 1.0 * rand() / RAND_MAX;
  }

  // return success
  return true;
}

// system random source callbacks
static const km_rand_src_cbs_t
RAND_SRC_SYSTEM_CBS = {
  .fill = rand_src_system_on_fill,
  .fini = NULL,
};

// init system random source (uses system rand())
void
km_rand_src_system_init(
  km_rand_src_t * const rs
) {
  rs->cbs = &RAND_SRC_SYSTEM_CBS;
  rs->data = NULL;
}

// grow data set
static bool
km_set_grow(
  km_set_t * const set,
  const size_t capacity
) {
  // alloc floats
  float * const floats = malloc(sizeof(float) * set->shape.num_floats * capacity);
  if (!floats) {
    return false;
  }

  // alloc ints
  int * const ints = malloc(sizeof(int) * set->shape.num_ints * capacity);
  if (!ints) {
    return false;
  }

  set->floats = floats;
  set->ints = ints;
  set->capacity = capacity;

  return true;
}

// init data set with shape and initial size
bool
km_set_init(
  km_set_t * const set,
  const km_shape_t * const shape,
  const size_t row_capacity
) {
  set->floats = NULL;
  set->ints = NULL;
  set->shape = *shape;
  set->num_rows = 0;
  set->capacity = 0;

  return km_set_grow(set, MAX(MIN_ROWS, row_capacity + 1));
}

// finalize data set
void
km_set_fini(km_set_t * const set) {
  if (set->floats) {
    // free floats
    free(set->floats);
    set->floats = NULL;
  }

  if (set->ints) {
    // free ints
    free(set->ints);
    set->ints = NULL;
  }

  // shrink capacity
  set->capacity = 0;
}

/* 
 * // append row to data set
 * bool
 * km_set_push_row(
 *   km_set_t * const set,
 *   const float * const floats,
 *   const float * const ints
 * ) {
 *   if (set->num_rows + 1 == set->capacity) {
 *     // resize buffers
 *     if (!km_set_grow(set, MAX(MIN_ROWS, 2 * set->capacity + 1))) {
 *       return false;
 *     }
 *   }
 * 
 *   // copy floats
 *   const size_t num_floats = set->shape.num_floats;
 *   if (num_floats > 0) {
 *     float * const dst = set->floats + num_floats * set->num_rows;
 *     const size_t stride = sizeof(float) * num_floats;
 * 
 *     memcpy(dst, floats, stride);
 *   }
 * 
 *   // copy ints
 *   const size_t num_ints = set->shape.num_ints;
 *   if (num_ints > 0) {
 *     int * const dst = set->ints + num_ints * set->num_rows;
 *     const size_t stride = sizeof(int) * num_ints;
 * 
 *     memcpy(dst, ints, stride);
 *   }
 * 
 *   // increment row count
 *   set->num_rows++;
 * 
 *   // return success
 *   return true;
 * }
 */ 

// append rows to data set, growing set if necessary
bool
km_set_push_rows(
  km_set_t * const set,
  const size_t num_rows,
  const float * const floats,
  const int * const ints
) {
  const size_t capacity_needed = set->num_rows + num_rows;
  // FIXME: potential overflow here
  if (capacity_needed >= set->capacity) {
    // crappy growth algorithm
    const size_t new_capacity = 2 * capacity_needed + 1;

    // resize storage
    if (!km_set_grow(set, MAX(MIN_ROWS, new_capacity))) {
      return false;
    }
  }

  // copy floats
  const size_t num_floats = set->shape.num_floats;
  if (num_floats > 0) {
    float * const dst = set->floats + num_floats * set->num_rows;
    const size_t stride = sizeof(float) * num_floats;

    // copy floats
    memcpy(dst, floats, stride * num_rows);
  }

  // copy ints
  const size_t num_ints = set->shape.num_ints;
  if (num_ints > 0) {
    int * const dst = set->ints + num_ints * set->num_rows;
    const size_t stride = sizeof(int) * num_ints;

    // copy ints
    memcpy(dst, ints, stride * num_rows);
  }

  // increment row count
  set->num_rows += num_rows;

  // return success
  return true;
}

// get row from data set
float *
km_set_get_row(
  const km_set_t * const set,
  const size_t i
) {
  const size_t num_floats = set->shape.num_floats;
  return set->floats + i * num_floats;
}

typedef struct {
  float d2;
  size_t cluster;
} row_map_item_t;

// init a cluster set of size N from a data set by picking random
// cluster centers
bool
km_clusters_rand_init(
  km_set_t * const cs,
  const size_t num_floats,
  const size_t num_clusters,
  km_rand_src_t * const rs
) {
  // init cluster shape
  const km_shape_t shape = {
    .num_floats = num_floats,
    .num_ints = 1,
  };

  // generate random cluster centers
  float floats[num_floats * num_clusters];
  if (!km_rand_src_fill(rs, num_floats * num_clusters, floats)) {
    // return failure
    return false;
  }

  // FIXME: should probably be heap-allocated
  int ints[num_clusters];
  memset(ints, 0, sizeof(ints));

  // init cluster set
  if (!km_set_init(cs, &shape, num_clusters)) {
    // return failure
    return false;
  }

  // add data, return result
  return km_set_push_rows(cs, num_clusters, floats, ints);
}

// use k-means to iteratively update the cluster centroids until there
// are no more changes to the centroids
bool
km_clusters_solve(
  km_set_t * const cs,
  const km_set_t * const set,
  const km_clusters_solve_cbs_t * const cbs,
  void * const cb_data
) {
  const size_t num_clusters = cs->num_rows,
               num_floats = set->shape.num_floats;

  // row map: row => distance, cluster ID
  row_map_item_t *row_map = malloc(sizeof(row_map_item_t) * set->num_rows);
  if (!row_map) {
    // return failure
    return false;
  }

  // init row map by setting the maximum distance
  for (size_t i = 0; i < set->num_rows; i++) {
    row_map[i].d2 = FLT_MAX;
  }

  // calculate clusters by doing the following:
  //   * walk all clusters and all rows
  //   * if we find a closer cluster, move row to cluster
  //   * if there were changes to any cluster, then calculate a new
  //     centroid for each cluster by averaging the cluster rows
  //   * repeat until there are no more changes
  bool changed = false;
  do {
    // no changes yet
    changed = false;

    for (size_t i = 0; i < num_clusters; i++) {
      // get the floats for this cluster
      const float * const floats = km_set_get_row(cs, i);

      for (size_t j = 0; j < set->num_rows; j++) {
        const float * const row_floats = km_set_get_row(set, j);

        // calculate the distance squared between these clusters
        const float d2 = distance_squared(num_floats, floats, row_floats);

        if (d2 < row_map[j].d2) { 
          // row is closer to this cluster, update distance and cluster
          row_map[j].d2 = d2;
          row_map[j].cluster = i;

          // flag change
          changed = true;
        }
      }
    }

    if (changed) {
      // if there were changes, then we need to calculate the new
      // cluster centers

      // calculate new center
      for (size_t i = 0; i < num_clusters; i++) {
        size_t num_rows = 0;
        float * const floats = km_set_get_row(cs, i);
        memset(floats, 0, sizeof(float) * num_floats);

        for (size_t j = 0; j < set->num_rows; j++) {
          const float * const row_floats = km_set_get_row(set, j);

          if (row_map[j].cluster == i) {
            // calculate numerator for average
            for (size_t k = 0; k < num_floats; k++) {
              floats[k] += row_floats[k];
            }

            // increment denominator for average
            num_rows++;
          }
        }

        // save number of rows in this cluster
        cs->ints[i] = num_rows;

        if (num_rows > 0) {
          for (size_t k = 0; k < num_floats; k++) {
            // divide by denominator to get average
            floats[k] /= num_rows;
          }
        }
      }
    }

    if (cbs && cbs->on_step) {
      // pass clusters to step callback
      cbs->on_step(cs, cb_data);
    }
  } while (changed);

  if (cbs && cbs->on_step) {
    float means[num_clusters];
    memset(means, 0, sizeof(float) * num_clusters);

    // calculate mean distances
    for (size_t i = 0; i < set->num_rows; i++) {
      means[row_map[i].cluster] += row_map[i].d2;
    }

    // calculate mean distances
    for (size_t i = 0; i < num_clusters; i++) {
      means[i] = (cs->ints[i]) ? (sqrt(means[i]) / cs->ints[i]) : 0;
    }

    // emit means
    cbs->on_means(cs, means, num_clusters, cb_data);
  }

  // free row_map
  free(row_map);

  // return success
  return true;
}