diff options
author | Paul Duncan <pabs@pablotron.org> | 2017-11-07 23:45:13 -0500 |
---|---|---|
committer | Paul Duncan <pabs@pablotron.org> | 2017-11-07 23:45:13 -0500 |
commit | 814e716cf003500ada840fcf7cc2c6cada41e1cb (patch) | |
tree | 9c5f3ea3d3bfdafe7272b8c805fe493c7b86a671 | |
parent | 9a98e13af98db2801430c5c4062a822b66ad74a2 (diff) | |
download | mathy-814e716cf003500ada840fcf7cc2c6cada41e1cb.tar.bz2 mathy-814e716cf003500ada840fcf7cc2c6cada41e1cb.zip |
remove old help
-rw-r--r-- | htdocs/index.html | 277 |
1 files changed, 0 insertions, 277 deletions
diff --git a/htdocs/index.html b/htdocs/index.html index f1327fc..d8119ec 100644 --- a/htdocs/index.html +++ b/htdocs/index.html @@ -58,283 +58,6 @@ </a><!-- btn --> <ul id='help' class='dropdown-menu'> - <li class='dropdown-header'> - Examples - </li> - - <li> - <a - href='#' - class='example' - data-text=' - \lim_{x \to \infty}{\frac{1}{x^2}} - ' - >1. Some Limit</a> - </li> - - <!-- li> - <a - href='#' - class='example' - data-text=' - \begin{align*} - &= \int_0^2{x^2 + 5x + 2}\,\text{d}x \\ - &= \int{x^2 + 5x + 2}\,\text{d}x \\ - &= \frac{1}{3}x^3 + \frac{5}{2}x^2 + 2x + c \\ - &= \frac{1}{3}2^3 + \frac{5}{2}2^2 + 2\times2 - - (\frac{1}{3}0^3 + \frac{5}{2}0^2 + 2\times0) \\ - &= \frac{8}{3} + \frac{20}{2} + 4 \\ - &= 14 + \frac{8}{3} \\ - &= \frac{50}{3} - \end{align*} - ' - >Test 2</a> - </li --> - - <li> - <a - href='#' - class='example' - data-text=' -\text{Quadratic Formula} \\ -x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} - ' - >2. Quadratic Formula</a> - </li> - - <li> - <a - href='#' - class='example' - data-text=' -\text{Cross Product via Matrix Determinant} \\ - -\begin{align*} - \vec{a} \times \vec{b} & = \begin{vmatrix} - \hat{i} & \hat{j} & \hat{k} \\ - \vec{a}_x & \vec{a}_y & \vec{a}_z \\ - \vec{b}_x & \vec{b}_y & \vec{b}_z - \end{vmatrix} \\ - - & = - \begin{vmatrix} - \vec{a}_y & \vec{a}_z \\ - \vec{b}_y & \vec{b}_z - \end{vmatrix} \hat{i} - - - \begin{vmatrix} - \vec{a}_x & \vec{a}_z \\ - \vec{b}_x & \vec{b}_z - \end{vmatrix} \hat{j} + - - \begin{vmatrix} - \vec{a}_x & \vec{a}_y \\ - \vec{b}_x & \vec{b}_y - \end{vmatrix} \hat{k} \\ - - & = - (\vec{a}_y\vec{b}_z - \vec{a}_z\vec{b}_y)\hat{i} - - (\vec{a}_x\vec{b}_z - \vec{a}_z\vec{b}_x)\hat{j} + - (\vec{a}_x\vec{b}_y - \vec{a}_x\vec{b}_y)\hat{k} \\ - - & = - \langle - \vec{a}_y\vec{b}_z - \vec{a}_z\vec{b}_y\text{, } - \vec{a}_x\vec{b}_z - \vec{a}_z\vec{b}_x\text{, } - \vec{a}_x\vec{b}_y - \vec{a}_y\vec{b}_z - \rangle \\ - - \vec{a} & = \langle2, 1, -1\rangle \\ - \vec{b} & = \langle-3, 4, 1\rangle \\ - \vec{a} \times \vec{b} & = \langle - (1)(1) - (-1)(4), - (2)(1) - (-1)(-3), - (2)(4) - (1)(-3) - \rangle \\ - - & = \langle - 5, 5, 11 - \rangle \\ - \vec{b} \times \vec{a} & = \langle - (4)(-1) - (1)(1), - (-3)(-1) - (1)(2), - (-3)(1) - (4)(2) - \rangle \\ - & = \langle - -5, -5, -11 - \rangle -\end{align*} - ' - >3. Cross Product</a> - </li> - - <li> - <a - href='#' - class='example' - data-text=" -\text{Derivative Rules} \\ - -\begin{align*} -% sum/difference rule -\frac{\text{d}}{\text{d}x} \, -f(x) \pm g(x) &= -\frac{\text{d}}{\text{d}x} \, f(x) \pm -\frac{\text{d}}{\text{d}x} \, g(x) & -\text{Sum/Difference Rule} \\ - -% constant factor rule -\frac{\text{d}}{\text{d}x} \, -k f(x) &= -k \frac{\text{d}}{\text{d}x} \, f(x) & -\text{Constant Factor Rule} \\ - -% constant rule -\frac{\text{d}}{\text{d}x} \, -k &= -0 & -\text{Constant Rule} \\ - -% power rule -\frac{\text{d}}{\text{d}x} \, -x^n &= -nx^{n-1} & -\text{Power Rule} \\ - -% exponent rule -\frac{\text{d}}{\text{d}x} \, -b^x &= -b^xln(b) & -\text{Exponent Rule} \\ - -% chain rule -\frac{\text{d}}{\text{d}x} \, -f(g(x)) &= -% (f \cdot g)(x) &= -f'(g(x))g'(x) & -\text{Chain Rule} \\ - -% product rule -\frac{\text{d}}{\text{d}x} \, -f(x)g(x) &= -f'(x)g(x) + f(x)g'(x) & -\text{Product Rule} \\ - -% quotient rule -\frac{\text{d}}{\text{d}x} \, -\frac{f(x)}{g(x)} &= -\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} & -\text{Quotient Rule} \\ - -% logarithm rule -\frac{\text{d}}{\text{d}x} \, -log_b{x} &= -\frac{1}{x ln(b)} & -\text{Logarithm Rule} \\ - -\end{align*} -" - >4. Derivative Rules</a> - </li> - - <li> - <a - href='#' - class='example' - data-text=" -% https://math.vanderbilt.edu/schectex/courses/cubic/ -\text{The Cubic Formula} \\ -\begin{align*} -% first term -x &= \sqrt[3]{ - % first term, first subterm - \left ( - \frac{-b^3}{27a^3} + - \frac{bc}{6a^2} - - \frac{d}{2a} - \right ) - - + - - \sqrt{ - % first term, second subterm - \left ( - \frac{-b^3}{27a^3} + - \frac{bc}{6a^2} - - \frac{d}{2a} - \right )^2 - - + - - % first term, third subterm - \left ( - \frac{c}{3a} - - \frac{b^2}{9a^2} - \right )^3 - } -} \\ - -&+ - -% second term -\sqrt[3]{ - % first term, second subterm - \left ( - \frac{-b^3}{27a^3} + - \frac{bc}{6a^2} - - \frac{d}{2a} - \right ) - - - - - \sqrt{ - % second term, second subterm - \left ( - \frac{-b^3}{27a^3} + - \frac{bc}{6a^2} - - \frac{d}{2a} - \right )^2 - - + - - % second term, third subterm - \left ( - \frac{c}{3a} - - \frac{b^2}{9a^2} - \right )^3 - } -} \\ - -&- - -% third part -\frac{b}{3a} -\end{align*} - " - >5. Cubic Formula</a> - </li> - <li> - <a - href='#' - class='example' - data-text=" -\text{Linear Regression} \\ - -\begin{align*} - m &= \frac{ - \sum(x_i - \bar{x})(y_i - \bar{y} ) - }{ - \sum(x_i - \bar{x})^2 - } \\ - - b &= \bar{y} - m\bar{x} \\ - - y &= mx + b -\end{align*} - " - >6. Linear Regression</a> - </li> - <li class='divider'></li> </ul><!-- dropdown-menu --> </div><!-- btn-group --> |