aboutsummaryrefslogtreecommitdiff
path: root/sha2.c
blob: 84667a84d7f33cf4c5c94126702e3ffb6decb09f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#include "sha2.h"
#include <string.h> // memcpy

// extract bytes from uint32_t
// (used in sha256_fini() and sha224_fini())
#define WB(ctx, i)  \
    ((ctx)->h[i] >> 24) & 0xff, \
    ((ctx)->h[i] >> 16) & 0xff, \
    ((ctx)->h[i] >> 8) & 0xff,  \
    ((ctx)->h[i]) & 0xff

// sha256 initial hash values
// (first 32 bits of the fractional parts of the square roots of the
// first 8 primes 2..19):
static const uint32_t SHA256_INIT[8] = {
  0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
  0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
};

// round constants
// (first 32 bits of the fractional parts of the cube roots of the first
// 64 primes 2..311):
static const uint32_t K[64] = {
  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,
  0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01,
  0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7,
  0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152,
  0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
  0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
  0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819,
  0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08,
  0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f,
  0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};

// rotate right
// (src: https://blog.regehr.org/archives/1063)
static inline uint32_t
rr(const uint32_t v, const size_t n) {
  return (v << (32 - n)) | (v >> n);
}

void sha256_init(sha256_t * const ctx) {
  ctx->buf_len = 0;
  ctx->num_bytes = 0;
  memcpy(ctx->h, SHA256_INIT, sizeof(SHA256_INIT));
}

// WI: decode buffer data as 32-bit words (used for the first 16 words)
#define WI(i) ( \
  (((uint32_t) ctx->buf[4 * (i) + 0]) << 24) | \
  (((uint32_t) ctx->buf[4 * (i) + 1]) << 16) | \
  (((uint32_t) ctx->buf[4 * (i) + 2]) << 8) | \
  ((uint32_t) ctx->buf[4 * (i) + 3]) \
)

// WE: expand first 16 buffer words into remaining 48 words
#define WE(i) do { \
  const uint32_t w2 = w[(i) - 2], \
                 w7 = w[(i) - 7], \
                 w15 = w[(i) - 15], \
                 w16 = w[(i) - 16], \
                 s0 = rr(w15, 7) ^ rr(w15, 18) ^ (w15 >> 3), \
                 s1 = rr(w2, 17) ^ rr(w2, 19) ^ (w2 >> 10); \
  w[i] = w16 + s0 + w7 + s1; \
} while (0)

// WC: compress word
#define WC(i) do { \
  const uint32_t s1 = rr(hs[4], 6) ^ rr(hs[4], 11) ^ rr(hs[4], 25), \
                 ch = (hs[4] & hs[5]) ^ ((~(hs[4])) & hs[6]), \
                 t0 = hs[7] + s1 + ch + K[i] + w[i], \
                 s0 = rr(hs[0], 2) ^ rr(hs[0], 13) ^ rr(hs[0], 22), \
                 mj = (hs[0] & hs[1]) ^ (hs[0] & hs[2]) ^ (hs[1] & hs[2]), \
                 t1 = s0 + mj; \
\
  hs[7] = hs[6]; \
  hs[6] = hs[5]; \
  hs[5] = hs[4]; \
  hs[4] = hs[3] + t0; \
  hs[3] = hs[2]; \
  hs[2] = hs[1]; \
  hs[1] = hs[0]; \
  hs[0] = t0 + t1; \
} while (0)

static void
sha256_block(sha256_t * const ctx) {
  // init first 16 words from buffer
  uint32_t w[64] = {
    WI(0), WI(1), WI(2), WI(3), WI(4), WI(5), WI(6), WI(7),
    WI(8), WI(9), WI(10), WI(11), WI(12), WI(13), WI(14), WI(15),
    0,
  };

  // Extend the first 16 words into the remaining 48 words w[16..63] of
  // the message schedule array
  //
  // for i from 16 to 63
  //   s0 := (w[i-15] rr  7) xor (w[i-15] rr 18) xor (w[i-15] rs  3)
  //   s1 := (w[i- 2] rr 17) xor (w[i- 2] rr 19) xor (w[i- 2] rs 10)
  //   w[i] := w[i-16] + s0 + w[i-7] + s1
  //
  // for (size_t i = 16; i < 64; i++) {
  //   const uint32_t w2 = w[i - 2],
  //                  w7 = w[i - 7],
  //                  w15 = w[i - 15],
  //                  w16 = w[i - 16],
  //                  s0 = rr(w15, 7) ^ rr(w15, 18) ^ (w15 >> 3),
  //                  s1 = rr(w2, 17) ^ rr(w2, 19) ^ (w2 >> 10);
  //   w[i] = w16 + s0 + w7 + s1;
  // }
  //
  // // fully unrolled version:
  // WE(24); WE(25); WE(26); WE(27); WE(28); WE(29); WE(30); WE(31);
  // WE(32); WE(33); WE(34); WE(35); WE(36); WE(37); WE(38); WE(39);
  // WE(40); WE(41); WE(42); WE(43); WE(44); WE(45); WE(46); WE(47);
  // WE(48); WE(49); WE(50); WE(51); WE(52); WE(53); WE(54); WE(55);
  // WE(56); WE(57); WE(58); WE(59); WE(60); WE(61); WE(62); WE(63);
  //
  // partially unrolled:
  // for (size_t we_i = 16; we_i < 64; we_i += 16) {
  //   WE(we_i + 0); WE(we_i + 1); WE(we_i + 2); WE(we_i + 3);
  //   WE(we_i + 4); WE(we_i + 5); WE(we_i + 6); WE(we_i + 7);
  //   WE(we_i + 8); WE(we_i + 9); WE(we_i + 10); WE(we_i + 11);
  //   WE(we_i + 12); WE(we_i + 13); WE(we_i + 14); WE(we_i + 15);
  // }
  for (size_t i = 16; i < 64; i++) {
    WE(i);
  }

  // Initialize working variables to current hash value
  uint32_t hs[8] = {
    ctx->h[0], ctx->h[1], ctx->h[2], ctx->h[3],
    ctx->h[4], ctx->h[5], ctx->h[6], ctx->h[7],
  };

  // Compression function main loop
  //
  // for i from 0 to 63
  //   S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
  //   ch := (e and f) xor ((not e) and g)
  //   temp1 := h + S1 + ch + k[i] + w[i]
  //   S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
  //   maj := (a and b) xor (a and c) xor (b and c)
  //   temp2 := S0 + maj
  //
  //   h := g
  //   g := f
  //   f := e
  //   e := d + temp1
  //   d := c
  //   c := b
  //   b := a
  //   a := temp1 + temp2
  //
  // for (size_t i = 0; i < 64; i++) {
  //   const uint32_t s1 = rr(hs[4], 6) ^ rr(hs[4], 11) ^ rr(hs[4], 25),
  //                  ch = (hs[4] & hs[5]) ^ ((~(hs[4])) & hs[6]),
  //                  t0 = hs[7] + s1 + ch + K[i] + w[i],
  //                  s0 = rr(hs[0], 2) ^ rr(hs[0], 13) ^ rr(hs[0], 22),
  //                  mj = (hs[0] & hs[1]) ^ (hs[0] & hs[2]) ^ (hs[1] & hs[2]),
  //                  t1 = s0 + mj;

  //   hs[7] = hs[6];
  //   hs[6] = hs[5];
  //   hs[5] = hs[4];
  //   hs[4] = hs[3] + t0;
  //   hs[3] = hs[2];
  //   hs[2] = hs[1];
  //   hs[1] = hs[0];
  //   hs[0] = t0 + t1;
  // }
  //
  // // fully unrolled version:
  // WC(0); WC(1); WC(2); WC(3); WC(4); WC(5); WC(6); WC(7);
  // WC(8); WC(9); WC(10); WC(11); WC(12); WC(13); WC(14); WC(15);
  // WC(16); WC(17); WC(18); WC(19); WC(20); WC(21); WC(22); WC(23);
  // WC(24); WC(25); WC(26); WC(27); WC(28); WC(29); WC(30); WC(31);
  // WC(32); WC(33); WC(34); WC(35); WC(36); WC(37); WC(38); WC(39);
  // WC(40); WC(41); WC(42); WC(43); WC(44); WC(45); WC(46); WC(47);
  // WC(48); WC(49); WC(50); WC(51); WC(52); WC(53); WC(54); WC(55);
  // WC(56); WC(57); WC(58); WC(59); WC(60); WC(61); WC(62); WC(63);
  //
  // partially unrolled:
  for (size_t i = 0; i < 64; i += 16) {
    WC(i + 0); WC(i + 1); WC(i + 2); WC(i + 3);
    WC(i + 4); WC(i + 5); WC(i + 6); WC(i + 7);
    WC(i + 8); WC(i + 9); WC(i + 10); WC(i + 11);
    WC(i + 12); WC(i + 13); WC(i + 14); WC(i + 15);
  }

  // Add the compressed chunk to the current hash value
  ctx->h[0] += hs[0];
  ctx->h[1] += hs[1];
  ctx->h[2] += hs[2];
  ctx->h[3] += hs[3];
  ctx->h[4] += hs[4];
  ctx->h[5] += hs[5];
  ctx->h[6] += hs[6];
  ctx->h[7] += hs[7];
}

#undef WI
#undef WE
#undef WC

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

void sha256_push(
  sha256_t * const ctx,
  const uint8_t * const src,
  const size_t src_len
) {
  const size_t buf_left = 64 - ctx->buf_len;

  if (src_len >= buf_left) {
    // fill remaining buffer
    memcpy(ctx->buf + ctx->buf_len, src, buf_left);
    sha256_block(ctx);
    ctx->buf_len = 0;

    const size_t new_src_len = src_len - buf_left;
    const size_t num_blocks = new_src_len / 64;

    // process chunks
    for (size_t i = 0; i < num_blocks; i++) {
      memcpy(ctx->buf, src + buf_left + (64 * i), 64);
      sha256_block(ctx);
    }

    // copy remaining bytes to buffer
    const size_t new_buf_len = (new_src_len - 64 * num_blocks);
    memcpy(ctx->buf, src + buf_left + (64 * num_blocks), new_buf_len);
    ctx->buf_len = new_buf_len;
  } else {
    memcpy(ctx->buf + ctx->buf_len, src, src_len);
    ctx->buf_len += src_len;
  }

  // update byte count
  ctx->num_bytes += src_len;
}

static void
sha256_push_u64(
  sha256_t * const ctx,
  const uint64_t val
) {
  const uint8_t buf[8] = {
    ((val >> 56) & 0xff),
    ((val >> 48) & 0xff),
    ((val >> 40) & 0xff),
    ((val >> 32) & 0xff),
    ((val >> 24) & 0xff),
    ((val >> 16) & 0xff),
    ((val >> 8) & 0xff),
    ((val) & 0xff),
  };

  sha256_push(ctx, buf, sizeof(buf));
}

// end of stream padding
static const uint8_t PADDING[65] = {
  128,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};

static void
sha256_push_footer(
  sha256_t * const ctx
) {
  const uint64_t num_bytes = ctx->num_bytes;
  const size_t pad_len = (65 - ((num_bytes + 1 + 8) % 64));

  // push padding
  sha256_push(ctx, PADDING, pad_len);

  // push length (in bits)
  sha256_push_u64(ctx, num_bytes * 8);
}

void sha256_fini(
  sha256_t * const ctx,
  uint8_t * const out
) {
  // push footer
  sha256_push_footer(ctx);

  // extract hash
  const uint8_t hash[32] = {
    WB(ctx, 0), WB(ctx, 1), WB(ctx, 2), WB(ctx, 3),
    WB(ctx, 4), WB(ctx, 5), WB(ctx, 6), WB(ctx, 7),
  };

  memcpy(out, hash, sizeof(hash));
}

void sha256(
  const uint8_t * const src,
  const size_t src_len,
  uint8_t * const dst
) {
  sha256_t ctx;
  sha256_init(&ctx);
  sha256_push(&ctx, src, src_len);
  sha256_fini(&ctx, dst);
}

// sha224 initial hash values
// (the second 32 bits of the fractional parts of the square roots of
// the 9th through 16th primes 23..53)
static const uint32_t SHA224_INIT[8] = {
  0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
  0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
};

void sha224_init(sha224_t * const ctx) {
  ctx->ctx.buf_len = 0;
  ctx->ctx.num_bytes = 0;
  memcpy(ctx->ctx.h, SHA224_INIT, sizeof(SHA224_INIT));
}

void sha224_push(
  sha224_t * const sha224_ctx,
  const uint8_t * const src,
  const size_t src_len
) {
  sha256_t * const ctx = (sha256_t * const) sha224_ctx;
  sha256_push(ctx, src, src_len);
}

void sha224_fini(
  sha224_t * const sha224_ctx,
  uint8_t * const out
) {
  sha256_t * const ctx = (sha256_t * const) sha224_ctx;

  // push footer
  sha256_push_footer(ctx);

  // extract hash
  const uint8_t hash[28] = {
    WB(ctx, 0), WB(ctx, 1), WB(ctx, 2), WB(ctx, 3),
    WB(ctx, 4), WB(ctx, 5), WB(ctx, 6),
  };

  memcpy(out, hash, sizeof(hash));
}

void sha224(
  const uint8_t * const src,
  const size_t src_len,
  uint8_t * const dst
) {
  sha224_t ctx;
  sha224_init(&ctx);
  sha224_push(&ctx, src, src_len);
  sha224_fini(&ctx, dst);
}