1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
#include <stdint.h> // uint64_t, etc
#include <stdio.h> // fprintf()
#include <string.h> // memcpy()
#include <immintrin.h>
#include "rand-bytes.h" // rand_bytes()
// 64-bit rotate left
#define ROL(v, n) (((v) << (n)) | ((v) >> (64-(n))))
// write named state array to given stream.
static void state_write(FILE *f, const char * const name, uint64_t s[static 25]) {
fprintf(f, "%s = ", name);
for (size_t i = 0; i < 25; i++) {
fprintf(f, "%s%016lx", i ? ", " : "", s[i]);
}
fputs("\n", f);
}
// check state array against expected value. print differences and exit
// with an error if it does not match the expected value.
static void check_state(const char * const func, uint64_t got[static 25], uint64_t exp[static 25]) {
if (memcmp(got, exp, 25 * sizeof(uint64_t))) {
// write failure message, got, and exp to stderr
fprintf(stderr, "%s() failed:\n", func);
state_write(stderr, "got", got);
state_write(stderr, "exp", exp);
// print differences
fputs("differences:\n", stderr);
for (size_t i = 0; i < 25; i++) {
if (got[i] != exp[i]) {
fprintf(stderr, " %2zu: got %016lx, exp %016lx\n", i, got[i], exp[i]);
}
}
// exit with error code
exit(-1);
}
}
static const __m256i K64 = { 64, 64, 64, 64 };
// 64-bit rotate left
#define AVX2_ROLI(v, n) (_mm256_slli_epi64((v), (n)) | _mm256_srli_epi64((v), (64-(n))))
#define AVX2_ROLV(v, n) (_mm256_sllv_epi64((v), (n)) | _mm256_srlv_epi64((v), (K64-(n))))
// load state array to avx2 registers
#define LOAD(s) __m256i \
r0_lo = _mm256_loadu_epi64(s + 0), /* row 0, cols 0-3 */ \
r1_lo = _mm256_loadu_epi64(s + 5), /* row 1, cols 0-3 */ \
r2_lo = _mm256_loadu_epi64(s + 10), /* row 2, cols 0-3 */ \
r3_lo = _mm256_loadu_epi64(s + 15), /* row 3, cols 0-3 */ \
r4_lo = _mm256_loadu_epi64(s + 20), /* row 4, cols 0-3 */ \
r0_hi = { s[ 4] }, /* row 0, col 4 */ \
r1_hi = { s[ 9] }, /* row 1, col 4 */ \
r2_hi = { s[14] }, /* row 2, col 4 */ \
r3_hi = { s[19] }, /* row 3, col 4 */ \
r4_hi = { s[24] }; /* row 4, col 4 */
// store avx2 registers to state array
#define STORE(s) do { \
static const __m256i M0 = { ~0, 0, 0, 0 }; \
union { long long int *i64; uint64_t *u64; } p = { .u64 = s }; \
\
/* store rows */ \
_mm256_storeu_epi64(p.i64 + 0, r0_lo); /* row 0, cols 0-3 */ \
_mm256_storeu_epi64(p.i64 + 5, r1_lo); /* row 1, cols 0-3 */ \
_mm256_storeu_epi64(p.i64 + 10, r2_lo); /* row 2, cols 0-3 */ \
_mm256_storeu_epi64(p.i64 + 15, r3_lo); /* row 3, cols 0-3 */ \
_mm256_storeu_epi64(p.i64 + 20, r4_lo); /* row 4, cols 0-3 */ \
_mm256_maskstore_epi64(p.i64 + 4, M0, r0_hi); /* row 0, col 4 */ \
_mm256_maskstore_epi64(p.i64 + 9, M0, r1_hi); /* row 1, col 4 */ \
_mm256_maskstore_epi64(p.i64 + 14, M0, r2_hi); /* row 2, col 4 */ \
_mm256_maskstore_epi64(p.i64 + 19, M0, r3_hi); /* row 3, col 4 */ \
_mm256_maskstore_epi64(p.i64 + 24, M0, r4_hi); /* row 4, col 4 */ \
} while (0)
// Iota round constants.
static const uint64_t RCS[] = {
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL, 0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL,
};
// scalar noop, used to test avx2 load/store
static void noop_scalar(uint64_t a[static 25]) {
(void) a;
}
/**
* @brief Theta step of scalar Keccak permutation.
* @param[in,out] a Keccak state (array of 25 64-bit integers).
*
* @note Only built when using the scalar backend or when building the
* test suite.
*/
static inline void theta_scalar(uint64_t a[static 25]) {
const uint64_t c[5] = {
a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20],
a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21],
a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22],
a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23],
a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24],
};
const uint64_t d[5] = {
c[4] ^ ROL(c[1], 1),
c[0] ^ ROL(c[2], 1),
c[1] ^ ROL(c[3], 1),
c[2] ^ ROL(c[4], 1),
c[3] ^ ROL(c[0], 1),
};
a[ 0] ^= d[0]; a[ 1] ^= d[1]; a[ 2] ^= d[2]; a[ 3] ^= d[3]; a[ 4] ^= d[4];
a[ 5] ^= d[0]; a[ 6] ^= d[1]; a[ 7] ^= d[2]; a[ 8] ^= d[3]; a[ 9] ^= d[4];
a[10] ^= d[0]; a[11] ^= d[1]; a[12] ^= d[2]; a[13] ^= d[3]; a[14] ^= d[4];
a[15] ^= d[0]; a[16] ^= d[1]; a[17] ^= d[2]; a[18] ^= d[3]; a[19] ^= d[4];
a[20] ^= d[0]; a[21] ^= d[1]; a[22] ^= d[2]; a[23] ^= d[3]; a[24] ^= d[4];
}
/**
* @brief Rho step of scalar Keccak permutation.
* @param[in,out] a Keccak state (array of 25 64-bit integers).
*
* @note Only built when using the scalar backend or when building the
* test suite.
*/
static inline void rho_scalar(uint64_t a[static 25]) {
a[ 1] = ROL(a[ 1], 1); // 1 % 64 = 1
a[ 2] = ROL(a[ 2], 62); // 190 % 64 = 62
a[ 3] = ROL(a[ 3], 28); // 28 % 64 = 28
a[ 4] = ROL(a[ 4], 27); // 91 % 64 = 27
a[ 5] = ROL(a[ 5], 36); // 36 % 64 = 36
a[ 6] = ROL(a[ 6], 44); // 300 % 64 = 44
a[ 7] = ROL(a[ 7], 6); // 6 % 64 = 6
a[ 8] = ROL(a[ 8], 55); // 55 % 64 = 55
a[ 9] = ROL(a[ 9], 20); // 276 % 64 = 20
a[10] = ROL(a[10], 3); // 3 % 64 = 3
a[11] = ROL(a[11], 10); // 10 % 64 = 10
a[12] = ROL(a[12], 43); // 171 % 64 = 43
a[13] = ROL(a[13], 25); // 153 % 64 = 25
a[14] = ROL(a[14], 39); // 231 % 64 = 39
a[15] = ROL(a[15], 41); // 105 % 64 = 41
a[16] = ROL(a[16], 45); // 45 % 64 = 45
a[17] = ROL(a[17], 15); // 15 % 64 = 15
a[18] = ROL(a[18], 21); // 21 % 64 = 21
a[19] = ROL(a[19], 8); // 136 % 64 = 8
a[20] = ROL(a[20], 18); // 210 % 64 = 18
a[21] = ROL(a[21], 2); // 66 % 64 = 2
a[22] = ROL(a[22], 61); // 253 % 64 = 61
a[23] = ROL(a[23], 56); // 120 % 64 = 56
a[24] = ROL(a[24], 14); // 78 % 64 = 14
}
/**
* @brief Pi step of scalar Keccak permutation.
* @param[in,out] a Keccak state (array of 25 64-bit integers).
*
* @note Only built when using the scalar backend or when building the
* test suite.
*/
static inline void pi_scalar(uint64_t s[static 25]) {
uint64_t t[25] = { 0 };
t[ 0] = s[ 0];
t[ 1] = s[ 6];
t[ 2] = s[12];
t[ 3] = s[18];
t[ 4] = s[24];
t[ 5] = s[ 3];
t[ 6] = s[ 9];
t[ 7] = s[10];
t[ 8] = s[16];
t[ 9] = s[22];
t[10] = s[ 1];
t[11] = s[ 7];
t[12] = s[13];
t[13] = s[19];
t[14] = s[20];
t[15] = s[ 4];
t[16] = s[ 5];
t[17] = s[11];
t[18] = s[17];
t[19] = s[23];
t[20] = s[ 2];
t[21] = s[ 8];
t[22] = s[14];
t[23] = s[15];
t[24] = s[21];
memcpy(s, t, sizeof(t));
}
/**
* @brief Chi step of scalar Keccak permutation.
* @param[in,out] a Keccak state (array of 25 64-bit integers).
*
* @note Only built when using the scalar backend or when building the
* test suite.
*/
static inline void chi_scalar(uint64_t s[static 25]) {
uint64_t t[25] = { 0 };
t[ 0] = s[ 0] ^ (~s[ 1] & s[ 2]);
t[ 1] = s[ 1] ^ (~s[ 2] & s[ 3]);
t[ 2] = s[ 2] ^ (~s[ 3] & s[ 4]);
t[ 3] = s[ 3] ^ (~s[ 4] & s[ 0]);
t[ 4] = s[ 4] ^ (~s[ 0] & s[ 1]);
t[ 5] = s[ 5] ^ (~s[ 6] & s[ 7]);
t[ 6] = s[ 6] ^ (~s[ 7] & s[ 8]);
t[ 7] = s[ 7] ^ (~s[ 8] & s[ 9]);
t[ 8] = s[ 8] ^ (~s[ 9] & s[ 5]);
t[ 9] = s[ 9] ^ (~s[ 5] & s[ 6]);
t[10] = s[10] ^ (~s[11] & s[12]);
t[11] = s[11] ^ (~s[12] & s[13]);
t[12] = s[12] ^ (~s[13] & s[14]);
t[13] = s[13] ^ (~s[14] & s[10]);
t[14] = s[14] ^ (~s[10] & s[11]);
t[15] = s[15] ^ (~s[16] & s[17]);
t[16] = s[16] ^ (~s[17] & s[18]);
t[17] = s[17] ^ (~s[18] & s[19]);
t[18] = s[18] ^ (~s[19] & s[15]);
t[19] = s[19] ^ (~s[15] & s[16]);
t[20] = s[20] ^ (~s[21] & s[22]);
t[21] = s[21] ^ (~s[22] & s[23]);
t[22] = s[22] ^ (~s[23] & s[24]);
t[23] = s[23] ^ (~s[24] & s[20]);
t[24] = s[24] ^ (~s[20] & s[21]);
memcpy(s, t, sizeof(t));
}
// mock iota step of scalar keccak
// note: not the real iota, because it iterates all 24 round constants
static inline void iota_scalar(uint64_t a[static 25]) {
for (size_t i = 0; i < 24; i++) {
a[0] ^= RCS[i];
}
}
// avx2 noop, used to test avx2 load/store
static void noop_avx2(uint64_t s[static 25]) {
LOAD(s);
STORE(s);
}
// theta step of avx2 keccak permutation.
static void theta_avx2(uint64_t s[static 25]) {
LOAD(s);
// c = xor(r0, r1, r2, r3, r4)
const __m256i c_lo = r0_lo ^ r1_lo ^ r2_lo ^ r3_lo ^ r4_lo,
c_hi = r0_hi ^ r1_hi ^ r2_hi ^ r3_hi ^ r4_hi;
// avx512 permute ids (for reference)
// static const __m512i I0 = { 4, 0, 1, 2, 3 },
// I1 = { 1, 2, 3, 4, 0 };
// masks
static const __m256i M0 = { ~0, 0, 0, 0 }, // { 1, 0, 0, 0 }
M1 = { ~0, ~0, ~0, 0 }; // { 1, 1, 1, 0 }
// permutes
static const uint8_t I0_LO = 0x90, // 0, 0, 1, 2 -> 0b10010000 -> 0x90
I0_HI = 0x03, // 3, 0, 0, 0 -> 0b00000011 -> 0x03
I1_LO = 0x39, // 1, 2, 3, 0 -> 0b00111001 -> 0x39
I1_HI = 0x00; // 0, 0, 0, 0 -> 0b00000000 -> 0x00
// d = xor(permute(i0, c), permute(i1, rol(c, 1)))
const __m256i d0_lo = (_mm256_permute4x64_epi64(c_lo, I0_LO) & ~M0) | (c_hi & M0),
d0_hi = _mm256_permute4x64_epi64(c_lo, I0_HI) & M0,
d1_lo = (_mm256_permute4x64_epi64(c_lo, I1_LO) & M1) | (_mm256_permute4x64_epi64(c_hi, I1_HI) & ~M1),
d1_hi = (c_lo & M0),
d_lo = d0_lo ^ AVX2_ROLI(d1_lo, 1),
d_hi = d0_hi ^ AVX2_ROLI(d1_hi, 1);
// row = xor(row, d)
r0_lo ^= d_lo; r1_lo ^= d_lo; r2_lo ^= d_lo; r3_lo ^= d_lo; r4_lo ^= d_lo;
r0_hi ^= d_hi; r1_hi ^= d_hi; r2_hi ^= d_hi; r3_hi ^= d_hi; r4_hi ^= d_hi;
STORE(s);
}
// rho step of avx2 keccak permutation.
static void rho_avx2(uint64_t s[static 25]) {
LOAD(s);
// rotate values
static const __m256i V0_LO = { 0, 1, 62, 28 }, V0_HI = { 27 },
V1_LO = { 36, 44, 6, 55 }, V1_HI = { 20 },
V2_LO = { 3, 10, 43, 25 }, V2_HI = { 39 },
V3_LO = { 41, 45, 15, 21 }, V3_HI = { 8 },
V4_LO = { 18, 2, 61, 56 }, V4_HI = { 14 };
// rotate rows
// FIXME: could reduce rotates by permuting
r0_lo = AVX2_ROLV(r0_lo, V0_LO); r0_hi = AVX2_ROLV(r0_hi, V0_HI);
r1_lo = AVX2_ROLV(r1_lo, V1_LO); r1_hi = AVX2_ROLV(r1_hi, V1_HI);
r2_lo = AVX2_ROLV(r2_lo, V2_LO); r2_hi = AVX2_ROLV(r2_hi, V2_HI);
r3_lo = AVX2_ROLV(r3_lo, V3_LO); r3_hi = AVX2_ROLV(r3_hi, V3_HI);
r4_lo = AVX2_ROLV(r4_lo, V4_LO); r4_hi = AVX2_ROLV(r4_hi, V4_HI);
STORE(s);
}
// pi step of avx2 keccak permutation.
static inline void pi_avx2(uint64_t s[static 25]) {
static const __m256i LM0 = { ~0, 0, 0, 0 },
LM1 = { 0, ~0, 0, 0 },
LM2 = { 0, 0, ~0, 0 },
LM3 = { 0, 0, 0, ~0 };
static const uint8_t T0_LO = 0xe4, T0_HI = 0x00, // 0b11100100 -> 0xe4
T1_LO = 0x43, T1_HI = 0x02, // 0b01000011 -> 0x43
T2_LO = 0x39, T2_HI = 0x00, // 0b00111001 -> 0x39
T3_LO = 0x90, T3_HI = 0x03, // 0b10010000 -> 0x90
T4_LO = 0x0e, T4_HI = 0x01; // 0b00001110 -> 0x0e
LOAD(s);
/*
* static const __m256i V0_LO = { 0, 6, 12, 18 },
* V1_LO = { 3, 9, 10, 16 },
* V2_LO = { 1, 7, 13, 19 },
* V3_LO = { 4, 5, 11, 17 },
* V4_LO = { 2, 8, 14, 15 };
* static const size_t V0_HI = 24, V1_HI = 22, V2_HI = 20, V3_HI = 23, V4_HI = 21;
*/
const __m256i t0_lo = (_mm256_permute4x64_epi64(r0_lo, T0_LO) & LM0) |
(_mm256_permute4x64_epi64(r1_lo, T0_LO) & LM1) |
(_mm256_permute4x64_epi64(r2_lo, T0_LO) & LM2) |
(_mm256_permute4x64_epi64(r3_lo, T0_LO) & LM3),
t0_hi = (_mm256_permute4x64_epi64(r4_hi, T0_HI) & LM0),
t1_lo = (_mm256_permute4x64_epi64(r0_lo, T1_LO) & LM0) |
(_mm256_permute4x64_epi64(r1_hi, T1_LO) & LM1) |
(_mm256_permute4x64_epi64(r2_lo, T1_LO) & LM2) |
(_mm256_permute4x64_epi64(r3_lo, T1_LO) & LM3),
t1_hi = (_mm256_permute4x64_epi64(r4_lo, T1_HI) & LM0),
t2_lo = (_mm256_permute4x64_epi64(r0_lo, T2_LO) & LM0) |
(_mm256_permute4x64_epi64(r1_lo, T2_LO) & LM1) |
(_mm256_permute4x64_epi64(r2_lo, T2_LO) & LM2) |
(_mm256_permute4x64_epi64(r3_hi, T2_LO) & LM3),
t2_hi = (_mm256_permute4x64_epi64(r4_lo, T2_HI) & LM0),
t3_lo = (_mm256_permute4x64_epi64(r0_hi, T3_LO) & LM0) |
(_mm256_permute4x64_epi64(r1_lo, T3_LO) & LM1) |
(_mm256_permute4x64_epi64(r2_lo, T3_LO) & LM2) |
(_mm256_permute4x64_epi64(r3_lo, T3_LO) & LM3),
t3_hi = (_mm256_permute4x64_epi64(r4_lo, T3_HI) & LM0),
t4_lo = (_mm256_permute4x64_epi64(r0_lo, T4_LO) & LM0) |
(_mm256_permute4x64_epi64(r1_lo, T4_LO) & LM1) |
(_mm256_permute4x64_epi64(r2_hi, T4_LO) & LM2) |
(_mm256_permute4x64_epi64(r3_lo, T4_LO) & LM3),
t4_hi = (_mm256_permute4x64_epi64(r4_lo, T4_HI) & LM0);
r0_lo = t0_lo; r0_hi = t0_hi;
r1_lo = t1_lo; r1_hi = t1_hi;
r2_lo = t2_lo; r2_hi = t2_hi;
r3_lo = t3_lo; r3_hi = t3_hi;
r4_lo = t4_lo; r4_hi = t4_hi;
STORE(s);
}
// chi step of avx2 keccak permutation
static inline void chi_avx2(uint64_t s[static 25]) {
// masks
static const __m256i M0 = { ~0, 0, 0, 0 }, // { 1, 0, 0, 0 }
M1 = { ~0, ~0, ~0, 0 }, // { 1, 1, 1, 0 }
M2 = { ~0, ~0, 0, ~0 }; // { 1, 1, 0, 1 }
// permutes
static const uint8_t I0_LO = 0x39, // 1, 2, 3, 0 -> 0b00111001 -> 0x39
I1_LO = 0x0e, // 2, 3, 0, 0 -> 0b00001110 -> 0x0e
I1_HI = 0x01; // 1, 0, 0, 0 -> 0b00000001 -> 0x01
LOAD(s);
// r0
{
const __m256i a_lo = (_mm256_permute4x64_epi64(r0_lo, I0_LO) & M1) | (_mm256_permute4x64_epi64(r0_hi, I0_LO) & ~M1),
a_hi = r0_lo & M0,
b_lo = (_mm256_permute4x64_epi64(r0_lo, I1_LO) & M2) | (_mm256_permute4x64_epi64(r0_hi, I1_LO) & ~M0),
b_hi = _mm256_permute4x64_epi64(r0_lo, I1_HI) & M0;
r0_lo ^= ~a_lo & b_lo; r0_hi ^= ~a_hi & b_hi; // r0 ^= ~a & b
}
// r1
{
const __m256i a_lo = (_mm256_permute4x64_epi64(r1_lo, I0_LO) & M1) | (_mm256_permute4x64_epi64(r1_hi, I0_LO) & ~M1),
a_hi = r1_lo & M0,
b_lo = (_mm256_permute4x64_epi64(r1_lo, I1_LO) & M2) | (_mm256_permute4x64_epi64(r1_hi, I1_LO) & ~M0),
b_hi = _mm256_permute4x64_epi64(r1_lo, I1_HI) & M0;
r1_lo ^= ~a_lo & b_lo; r1_hi ^= ~a_hi & b_hi; // r1 ^= ~a & b
}
// r2
{
const __m256i a_lo = (_mm256_permute4x64_epi64(r2_lo, I0_LO) & M1) | (_mm256_permute4x64_epi64(r2_hi, I0_LO) & ~M1),
a_hi = r2_lo & M0,
b_lo = (_mm256_permute4x64_epi64(r2_lo, I1_LO) & M2) | (_mm256_permute4x64_epi64(r2_hi, I1_LO) & ~M0),
b_hi = _mm256_permute4x64_epi64(r2_lo, I1_HI) & M0;
r2_lo ^= ~a_lo & b_lo; r2_hi ^= ~a_hi & b_hi; // r2 ^= ~a & b
}
// r3
{
const __m256i a_lo = (_mm256_permute4x64_epi64(r3_lo, I0_LO) & M1) | (_mm256_permute4x64_epi64(r3_hi, I0_LO) & ~M1),
a_hi = r3_lo & M0,
b_lo = (_mm256_permute4x64_epi64(r3_lo, I1_LO) & M2) | (_mm256_permute4x64_epi64(r3_hi, I1_LO) & ~M0),
b_hi = _mm256_permute4x64_epi64(r3_lo, I1_HI) & M0;
r3_lo ^= ~a_lo & b_lo; r3_hi ^= ~a_hi & b_hi; // r3 ^= ~a & b
}
// r4
{
const __m256i a_lo = (_mm256_permute4x64_epi64(r4_lo, I0_LO) & M1) | (_mm256_permute4x64_epi64(r4_hi, I0_LO) & ~M1),
a_hi = r4_lo & M0,
b_lo = (_mm256_permute4x64_epi64(r4_lo, I1_LO) & M2) | (_mm256_permute4x64_epi64(r4_hi, I1_LO) & ~M0),
b_hi = _mm256_permute4x64_epi64(r4_lo, I1_HI) & M0;
r4_lo ^= ~a_lo & b_lo; r4_hi ^= ~a_hi & b_hi; // r4 ^= ~a & b
}
STORE(s);
}
// mock iota step of avx2 keccak
// note: not the real iota, because it iterates all 24 round constants
static inline void iota_avx2(uint64_t s[static 25]) {
LOAD(s);
for (size_t i = 0; i < 24; i++) {
const __m256i rc = { RCS[i], 0, 0, 0 };
r0_lo ^= rc;
}
STORE(s);
}
#define DEF_TEST(STEP) void test_ ## STEP (void) { \
/* get random data */ \
uint64_t src[25] = { 0 }; \
rand_bytes(src, sizeof(src)); \
\
/* get expected value */ \
uint64_t exp[25] = { 0 }; \
memcpy(exp, src, sizeof(src)); \
STEP ## _scalar(exp); \
\
/* get test value */ \
uint64_t got[25] = { 0 }; \
memcpy(got, src, sizeof(src)); \
STEP ## _avx2(got); \
\
/* check avx2 state against scalar state */ \
check_state(__func__, got, exp); \
}
DEF_TEST(noop) // test load/store
DEF_TEST(theta) // test theta step
DEF_TEST(rho) // test rho step
DEF_TEST(pi) // test pi step
DEF_TEST(chi) // test chi step
DEF_TEST(iota) // test iota step
int main(void) {
test_noop();
test_theta();
test_rho();
test_pi();
test_chi();
test_iota();
printf("ok\n");
return 0;
}
|