1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
#include <stdbool.h> // bool
#include <stdint.h> // uint64_t
#include <stdlib.h> // bsearch(), qsort()
#include <string.h> // memcpy
#include <stdio.h> // debug
#include "sok.h"
#define UNUSED(a) ((void) (a))
#define GROW_SIZE (4096 / sizeof(uint64_t))
#define USE_QSORT 1
static int
u64_cmp(
const void * const ap,
const void * const bp
) {
const uint64_t a = *((uint64_t*) ap),
b = *((uint64_t*) bp);
return (a > b) ? -1 : ((a == b) ? 0 : 1);
}
static bool
sok_cache_grow(
sok_cache_t * const cache
) {
// calculate new capacity
const size_t new_capacity = cache->capacity + GROW_SIZE;
if (new_capacity < cache->capacity) {
return false;
}
// reallocate memory
uint64_t * const vals = realloc(cache->vals, new_capacity * sizeof(uint64_t));
if (!vals) {
return false;
}
// update data
cache->vals = vals;
cache->capacity = new_capacity;
// return success
return true;
}
static bool
sok_cache_has_hash(
const sok_cache_t * const cache,
const uint64_t hash
) {
#if 0
for (size_t i = 0; i < cache->num_vals; i++) {
if (cache->vals[i] == hash) {
return true;
}
}
// return failure
return false;
#else
return !!bsearch(
&hash,
cache->vals,
cache->num_vals,
sizeof(uint64_t),
u64_cmp
);
#endif /* 0 */
}
bool
sok_cache_has(
const sok_cache_t * const cache,
const sok_ctx_t * const ctx
) {
return sok_cache_has_hash(cache, sok_ctx_hash(ctx));
}
bool
sok_cache_add(
sok_cache_t * const cache,
const sok_ctx_t * const ctx
) {
/*
* // hash context
* const uint64_t hash = sok_ctx_hash(ctx);
*
* // check for duplicates
* if (sok_cache_has_hash(cache, hash)) {
* return false;
* }
*/
// check capacity
if (cache->num_vals >= cache->capacity) {
// grow cache
if (!sok_cache_grow(cache)) {
// return failure
return false;
}
}
// append hash
const uint64_t hash = sok_ctx_hash(ctx);
#if USE_QSORT
cache->vals[cache->num_vals] = hash;
cache->num_vals++;
// sort values
qsort(cache->vals, cache->num_vals, sizeof(uint64_t), u64_cmp);
#else
size_t i;
for (i = 0; cache->vals[i] < hash && i < cache->num_vals; i++);
if (i < cache->num_vals) {
if (cache->vals[i] == hash) {
return true;
}
// move remaining data
const size_t num_bytes = (cache->num_vals - i) * sizeof(uint64_t);
memmove(cache->vals + (i + 1), cache->vals + i, num_bytes);
// insert value
cache->vals[i] = hash;
cache->num_vals++;
} else {
// append value
cache->vals[cache->num_vals] = hash;
cache->num_vals++;
}
#endif /* USE_QSORT */
// return success
return true;
}
bool
sok_cache_init(
sok_cache_t * const cache,
const size_t capacity
) {
// alloc memory, check for error
uint64_t * const vals = malloc(capacity * sizeof(uint64_t));
if (!vals) {
// return failure
return false;
}
// populate cache
cache->vals = vals;
cache->num_vals = 0;
cache->capacity = capacity;
// return success
return true;
}
void
sok_cache_fini(
sok_cache_t * const cache
) {
if (cache->vals) {
// free memory
free(cache->vals);
cache->vals = NULL;
}
}
|